Causal Quartet
When statistics alone
do not tell the full story
Lucy D’Agostino McGowan
@LucyStats�
Department of Statistical Sciences
Wake Forest University
lucymcgowan.com/talk
TABLE OF CONTENTS
CAUSAL INFERENCE
CAUSAL QUARTET
02
SENSITIVITY ANALYSES
03
01
Quick Primer
What should we adjust for?
What if we haven’t measured everything?
3
Causal inference
4
Does X cause Y?
X
Y
Potential Outcomes
5
Potential Outcomes
6
Potential Outcomes
7
Split Decision: Life Stories
8
Vicky, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons
Award-winning actor, rapper, and producer Ice-T unveils a compelling memoir of his early life robbing jewelry stores until he found fame and fortune—while a handful of bad choices sent his former crime partner down an incredibly different path.
Ice-T & Spike
9
35 years in prison
Fame & fortune
One more heist
Abandons criminal life
Ice-T
35 years in prison
Fame & fortune
One more heist
Abandons criminal life
Spike
r-causal.org
Ice-T, Spike,
& co
10
.
.
.
Fame & fortune
35 years in prison
Fame & fortune
One more heist
Abandons criminal life
Ice-T
35 years in prison
One more heist
Abandons criminal life
Spike
r-causal.org
Fame & fortune
35 years in prison
One more heist
Abandons criminal life
n
.
.
.
.
.
.
Fame & fortune
35 years in prison
One more heist
Abandons criminal life
3
Ice-T, Spike,
& co
11
Fame & fortune
35 years in prison
Fame & fortune
One more heist
Abandons criminal life
Ice-T
35 years in prison
One more heist
Abandons criminal life
Spike
r-causal.org
Fame & fortune
35 years in prison
One more heist
Abandons criminal life
n
Fame & fortune
35 years in prison
One more heist
Abandons criminal life
3
.
.
.
.
.
.
.
.
.
Ice-T, Spike,
& co
12
Fame & fortune
35 years in prison
Fame & fortune
One more heist
Abandons criminal life
Ice-T
35 years in prison
One more heist
Abandons criminal life
Spike
r-causal.org
Fame & fortune
35 years in prison
One more heist
Abandons criminal life
n
Fame & fortune
35 years in prison
One more heist
Abandons criminal life
3
.
.
.
.
.
.
.
.
.
Consistency
13
Consistency
14
the outcome we observe
Consistency
15
the outcome we observe
is exactly equal to
Consistency
16
the outcome we observe
is exactly equal to
the potential outcome under the observed exposure
Exchangeability
17
the potential
outcomes
Exchangeability
18
are independent
the potential
outcomes
Exchangeability
19
are independent
of the exposure assignment given some measured factors
the potential
outcomes
Exchangeability
20
“No unmeasured confounders”
X
Y
Z
Exchangeability
21
“No unmeasured confounders”
Abandoning crimnal life vs
one more heist
Fame & fortune vs 35 years in prison
Z
Positivity
22
Positivity
23
For all individuals within strata of Z there exists a non-zero probability of receiving every exposure level.
Exchangeability
24
“No unmeasured confounders”
✓ We have measured all Z
X
Y
Z
Causal Inference �is not a statistics problem
25
Causal Inference �is not a statistics problem
26
just
^
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
The problem
We have measured variables, what should we adjust for?
27
The problem
28
x | y | z |
0.49 | 1.71 | 2.24 |
0.07 | 0.68 | 0.92 |
0.40 | -1.60 | -0.10 |
. . . | . . . | . . . |
0.55 | -1.73 | -2.34 |
The problem
29
x | y | z |
0.49 | 1.71 | 2.24 |
0.07 | 0.68 | 0.92 |
0.40 | -1.60 | -0.10 |
. . . | . . . | . . . |
0.55 | -1.73 | -2.34 |
exposure
The problem
30
x | y | z |
0.49 | 1.71 | 2.24 |
0.07 | 0.68 | 0.92 |
0.40 | -1.60 | -0.10 |
. . . | . . . | . . . |
0.55 | -1.73 | -2.34 |
exposure
outcome
The problem
31
x | y | z |
0.49 | 1.71 | 2.24 |
0.07 | 0.68 | 0.92 |
0.40 | -1.60 | -0.10 |
. . . | . . . | . . . |
0.55 | -1.73 | -2.34 |
exposure
outcome
measured factor
Estimate the causal effect!
32
x | y | z |
0.49 | 1.71 | 2.24 |
0.07 | 0.68 | 0.92 |
0.40 | -1.60 | -0.10 |
. . . | . . . | . . . |
0.55 | -1.73 | -2.34 |
exposure
outcome
measured factor
A bit more info:
cor(x, z):
0.7
One unit increase in the exposure yields an average increase in the outcome of 1
The exposure and measured factor are positively correlated
33
To adjust or not adjust, that is the question
34
(1) Collider
35
X
Y
Z
(1) Collider
(2) Confounder
36
X
Y
Z
X
Y
Z
(1) Collider
(2) Confounder
(3) Mediator
37
X
Y
Z
X
Y
Z
X
Y
Z
(1) Collider
(2) Confounder
(4) M-Bias
(3) Mediator
38
X
Y
Z
U2
U1
X
Y
Z
X
Y
Z
X
Y
Z
(1) Collider
(2) Confounder
(4) M-Bias
Causal Quartet
(3) Mediator
39
X
Y
Z
U2
U1
X
Y
Z
X
Y
Z
X
Y
Z
40
X
Y
Z
41
X
Y
Z
42
X
Y
Z
43
X
Y
Z
U2
U1
44
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
(1) Collider
(2) Confounder
(4) M-Bias
(3) Mediator
45
X
Y
Z
U2
U1
X
Y
Z
X
Y
Z
X
Y
Z
(1) Collider
(2) Confounder
(4) M-Bias
(3) Mediator
46
X
Y
Z
U2
U1
X
Y
Z
X
Y
Z
X
Y
Z
(1) Collider
(4) M-Bias
(2) Confounder
(3) Mediator
47
X
Y
Z
U2
U1
X
Y
Z
X
Y
Z
X
Y
Z
(2) Confounder
(4) M-Bias
(1) Collider
(3) Mediator
48
X
Y
Z
U2
U1
X
Y
Z
X
Y
Z
X
Y
Z
(2) Confounder
(1) Collider
(4) M-Bias
(3) Mediator
49
X
Y
Z
X
Y
Z
X
Y
Z
X
Y
Z
U2
U1
50
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
51
52
Data-Generating Mechanism | True Causal Model | True Causal Effect | ATE adjusting for Z |
(1) Collider | Y ~ X | 1 | 0.55 |
(2) Confounder | Y ~ X ; Z | 0.5 | 0.5 |
(3) Mediator | Direct effect: Y ~ X ; Z Total effect: Y ~ X | Direct effect: 0 Total effect: 1 | 0 |
(4) M-bias | Y ~ X | 1 | 0.88 |
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
^
53
Data-Generating Mechanism | True Causal Model | True Causal Effect | ATE adjusting for Z |
(1) Collider | Y ~ X | 1 | 0.55 |
(2) Confounder | Y ~ X ; Z | 0.5 | 0.5 |
(3) Mediator | Direct effect: Y ~ X ; Z Total effect: Y ~ X | Direct effect: 0 Total effect: 1 | 0 |
(4) M-bias | Y ~ X | 1 | 0.88 |
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
^
54
Data-Generating Mechanism | True Causal Model | True Causal Effect | ATE adjusting for Z |
(1) Collider | Y ~ X | 1 | 0.55 |
(2) Confounder | Y ~ X ; Z | 0.5 | 0.5 |
(3) Mediator | Direct effect: Y ~ X ; Z Total effect: Y ~ X | Direct effect: 0 Total effect: 1 | 0 |
(4) M-bias | Y ~ X | 1 | 0.88 |
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
^
55
Data-Generating Mechanism | True Causal Model | True Causal Effect | ATE adjusting for Z |
(1) Collider | Y ~ X | 1 | 0.55 |
(2) Confounder | Y ~ X ; Z | 0.5 | 0.5 |
(3) Mediator | Direct effect: Y ~ X ; Z Total effect: Y ~ X | Direct effect: 0 Total effect: 1 | 0 |
(4) M-bias | Y ~ X | 1 | 0.88 |
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
^
56
Data-Generating Mechanism | True Causal Model | True Causal Effect | ATE adjusting for Z |
(1) Collider | Y ~ X | 1 | 0.55 ❌ |
(2) Confounder | Y ~ X ; Z | 0.5 | 0.5 ✔ |
(3) Mediator | Direct effect: Y ~ X ; Z Total effect: Y ~ X | Direct effect: 0 Total effect: 1 | 0 |
(4) M-bias | Y ~ X | 1 | 0.88 ❌ |
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
^
The problem:
do we adjust for Z?
57
x | y | z |
0.49 | 1.71 | 2.24 |
0.07 | 0.68 | 0.92 |
0.40 | -1.60 | -0.10 |
. . . | . . . | . . . |
0.55 | -1.73 | -2.34 |
Causal Inference �is not a statistics problem
58
just
^
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
The Solution
59
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
X
Y
Z
X
Y
Z
X
Y
Z
X
Y
Z
U2
U1
The Solution
60
partial
^
z_baseline | x_baseline | y_baseline | x_followup | y_followup | z_followup |
1.89 | 0.71 | 1.82 | 0.06 | 0.51 | -0.38 |
-1.35 | -2.47 | -3.58 | -2.30 | -2.79 | -3.94 |
-2.11 | -0.30 | -0.91 | -.32 | -1.87 | -1.14 |
. . . | . . . | . . . | . . . | . . . | . . . |
-1.34 | 1.14 | -0.67 | -0.439 | 0.99 | 2.45 |
The Solution
61
z_baseline | x_baseline | y_baeline | x_followup | y_followup | z_followup |
1.89 | 0.71 | 1.82 | 0.06 | 0.51 | -0.38 |
-1.35 | -2.47 | -3.58 | -2.30 | -2.79 | -3.94 |
-2.11 | -0.30 | -0.91 | -.32 | -1.87 | -1.14 |
. . . | . . . | . . . | . . . | . . . | . . . |
-1.34 | 1.14 | -0.67 | -0.439 | 0.99 | 2.45 |
pre-exposure
partial
^
The Solution
62
z_baseline | x_baseline | y_baseline | x_followup | y_followup | z_followup |
1.89 | 0.71 | 1.82 | 0.06 | 0.51 | -0.38 |
-1.35 | -2.47 | -3.58 | -2.30 | -2.79 | -3.94 |
-2.11 | -0.30 | -0.91 | -.32 | -1.87 | -1.14 |
. . . | . . . | . . . | . . . | . . . | . . . |
-1.34 | 1.14 | -0.67 | -0.439 | 0.99 | 2.45 |
time 0
partial
^
The Solution
63
z_baseline | x_baseline | y_baseline | x_followup | y_followup | z_followup |
1.89 | 0.71 | 1.82 | 0.06 | 0.51 | -0.38 |
-1.35 | -2.47 | -3.58 | -2.30 | -2.79 | -3.94 |
-2.11 | -0.30 | -0.91 | -.32 | -1.87 | -1.14 |
. . . | . . . | . . . | . . . | . . . | . . . |
-1.34 | 1.14 | -0.67 | -0.439 | 0.99 | 2.45 |
follow-up
partial
^
The Solution
64
z_baseline | x_baseline | y_baseline | x_followup | y_followup | z_followup |
1.89 | 0.71 | 1.82 | 0.06 | 0.51 | -0.38 |
-1.35 | -2.47 | -3.58 | -2.30 | -2.79 | -3.94 |
-2.11 | -0.30 | -0.91 | -.32 | -1.87 | -1.14 |
. . . | . . . | . . . | . . . | . . . | . . . |
-1.34 | 1.14 | -0.67 | -0.439 | 0.99 | 2.45 |
exposure: sodium intake
partial
^
The Solution
65
z_baseline | x_baseline | y_baseline | x_followup | y_followup | z_followup |
1.89 | 0.71 | 1.82 | 0.06 | 0.51 | -0.38 |
-1.35 | -2.47 | -3.58 | -2.30 | -2.79 | -3.94 |
-2.11 | -0.30 | -0.91 | -.32 | -1.87 | -1.14 |
. . . | . . . | . . . | . . . | . . . | . . . |
-1.34 | 1.14 | -0.67 | -0.439 | 0.99 | 2.45 |
outcome: systolic blood pressure
partial
^
The Solution
66
z_baseline | x_baseline | y_baseline | x_followup | y_followup | z_followup |
1.89 | 0.71 | 1.82 | 0.06 | 0.51 | -0.38 |
-1.35 | -2.47 | -3.58 | -2.30 | -2.79 | -3.94 |
-2.11 | -0.30 | -0.91 | -.32 | -1.87 | -1.14 |
. . . | . . . | . . . | . . . | . . . | . . . |
-1.34 | 1.14 | -0.67 | -0.439 | 0.99 | 2.45 |
measured factor: proteinuria
partial
^
(1) Collider
(2) Confounder
(4) M-Bias
(3) Mediator
67
X
Y
Z
U2
U1
X
Y
Z
X
Y
Z
X
Y
Z
(1) Collider
(2) Confounder
(4) M-Bias
(3) Mediator
68
X
Y
Z
U2
U1
X
Y
Z
X
Y
Z
X
Y
Z
sodium intake
systolic blood pressure
proteinuria
69
70
time
X
Y
Z
X
Y
Z
baseline
followup
71
time
baseline
followup
Systolic blood pressure at follow up
X
Y
Z
X
Y
Z
Sodium intake
at baseline
Proteinuria at follow up
72
time
baseline
followup
Systolic blood pressure at follow up
X
Y
Z
X
Y
Z
Sodium intake
at baseline
Proteinuria at follow up
True Causal Effect: 1
Estimated Causal Effect: 0.55
73
time
X
Y
Z
X
Y
Z
baseline
followup
74
time
X
Y
Z
X
Y
Z
baseline
followup
Sodium intake
at baseline
Systolic blood pressure at follow up
Proteinuria at baseline
75
time
X
Y
Z
X
Y
Z
baseline
followup
Sodium intake
at baseline
Systolic blood pressure at follow up
Proteinuria at baseline
True Causal Effect: 1
Estimated Causal Effect: 1
The Solution
76
z_baseline | x_baseline | y_baseline | x_followup | y_followup | z_followup |
1.89 | 0.71 | 1.82 | 0.06 | 0.51 | -0.38 |
-1.35 | -2.47 | -3.58 | -2.30 | -2.79 | -3.94 |
-2.11 | -0.30 | -0.91 | -.32 | -1.87 | -1.14 |
. . . | . . . | . . . | . . . | . . . | . . . |
-1.34 | 1.14 | -0.67 | -0.439 | 0.99 | 2.45 |
y_followup ~ x_baseline + z_baseline
partial
^
The Solution
77
Data-Generating Mechanism | True Causal Model | True Causal Effect | ATE adjusting for pre-exposure Z |
(1) Collider | Y ~ X | 1 | 1 |
(2) Confounder | Y ~ X ; Z | 0.5 | 0.5 |
(3) Mediator | Direct effect: Y ~ X ; Z Total effect: Y ~ X | Direct effect: 0 Total effect: 1 | 1 |
(4) M-bias | Y ~ X | 1 | 0.88 |
^
partial
^
The Solution
78
Data-Generating Mechanism | True Causal Model | True Causal Effect | ATE adjusting for pre-exposure Z |
(1) Collider | Y ~ X | 1 | 1 ✔ |
(2) Confounder | Y ~ X ; Z | 0.5 | 0.5 ✔ |
(3) Mediator | Direct effect: Y ~ X ; Z Total effect: Y ~ X | Direct effect: 0 Total effect: 1 | 1 ✔ |
(4) M-bias | Y ~ X | 1 | 0.88 ❌ |
^
partial
^
The Solution
79
Data-Generating Mechanism | True Causal Model | True Causal Effect | ATE adjusting for pre-exposure Z |
(1) Collider | Y ~ X | 1 | 1 ✔ |
(2) Confounder | Y ~ X ; Z | 0.5 | 0.5 ✔ |
(3) Mediator | Direct effect: Y ~ X ; Z Total effect: Y ~ X | Direct effect: 0 Total effect: 1 | 1 ✔ |
(4) M-bias | Y ~ X | 1 | 0.88 ❌ |
^
partial
^
(2) Confounder
(1) Collider
(4) M-Bias
(3) Mediator
80
X
Y
Z
X
Y
Z
X
Y
Z
X
Y
Z
U2
U1
(2) Confounder
(1) Collider
(4) M-Bias
(3) Mediator
81
X
Y
Z
X
Y
Z
X
Y
Z
X
Y
Z
U2
U1
(2) Confounder
(1) Collider
(4) M-Bias
(3) Mediator
82
X
Y
Z
X
Y
Z
X
Y
Z
X
Y
Z
U2
U1
On M-Bias
83
84
devtools::install_github(
“r-causal/quartets”
)
install.packages(“quartets”)
D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.
TABLE OF CONTENTS
CAUSAL INFERENCE
CAUSAL QUARTET
02
SENSITIVITY ANALYSES
03
01
Quick Primer
What should we adjust for?
Thinking about
unmeasured confounding
85
The problem
We might not have measured all of the important variables
86
Quantifying unmeasured confounding
87
Cornfield
Rosenbaum & Rubin
Lin, Psaty, & Kronmal
Cinelli & Hazlett
88
WHAT YOU NEED
EXPOSURE
OUTCOME
EFFECT
OUTCOME
UNMEASURED
CONFOUNDER
EFFECT
EXPOSURE
UNMEASURED
CONFOUNDER
EFFECT
89
90
tipr
D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6
TIPPING POINT
What will tip our confidence bound to cross the null?
91
92
D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6
93
{action}_{effect}_with_{what}
D’Agostino McGowan, L., (2022). tipr: An R package for sensitivity analyses for unmeasured confounders. Journal of Open Source Software, 7(77), 4495, https://doi.org/10.21105/joss.04495
94
{action}_{effect}_with_{what}
tip_rr_with_continous()
D’Agostino McGowan, L., (2022). tipr: An R package for sensitivity analyses for unmeasured confounders. Journal of Open Source Software, 7(77), 4495, https://doi.org/10.21105/joss.04495
95
{action}_{effect}_with_{what}
tip_rr_with_continous()
adjust_coef_with_binary()
D’Agostino McGowan, L., (2022). tipr: An R package for sensitivity analyses for unmeasured confounders. Journal of Open Source Software, 7(77), 4495, https://doi.org/10.21105/joss.04495
96
QUESTION
Cancer
VERSUS SULFONYLUREAS
Metformin
97
ANALYSIS
98
RESULTS
99
Lung Cancer | 0.87 (0.79, 0.96) |
Liver Cancer | 0.46 (0.37, 0.57) |
Colorectal Cancer | 0.86 (0.75, 0.99) |
OUTCOME
METFORMIN� (ADJ HAZARD RATIO)
What if alcohol consumption is an unmeasured confounder?
100
What if heavy alcohol consumption is prevalent among 4% of Metformin users and 6% of Sulfonylurea users?
101
Meadows SO, Engel CC, Collins RL, Beckman RL, Cefalu M,
Hawes-Dawson J, et al. 2015 health related behaviors survey:
Substance use among US active-duty service members. RAND; 2018.
102
library(tipr)
adjust_hr_with_binary(
effect_observed = c(0.79, 0.87, 0.96),
exposed_confounder_prev = .04,
unexposed_confounder_prev = .06,
confounder_outcome_effect = 2)
What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?
103
library(tipr)
adjust_hr_with_binary(
effect_observed = c(0.79, 0.87, 0.96),
exposed_confounder_prev = .04,
unexposed_confounder_prev = .06,
confounder_outcome_effect = 2)
What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?
RESULTS
104
Lung Cancer | 0.87 (0.79, 0.96) |
Liver Cancer | 0.46 (0.37, 0.57) |
Colorectal Cancer | 0.86 (0.75, 0.99) |
OUTCOME
METFORMIN� (ADJ HAZARD RATIO)
105
library(tipr)
adjust_hr_with_binary(
effect_observed = c(0.79, 0.87, 0.96),
exposed_confounder_prev = .04,
unexposed_confounder_prev = .06,
confounder_outcome_effect = 2)
What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?
What if heavy alcohol consumption is prevalent among 4% of Metformin users and 6% of Sulfonylurea users?
106
Meadows SO, Engel CC, Collins RL, Beckman RL, Cefalu M,
Hawes-Dawson J, et al. 2015 health related behaviors survey:
Substance use among US active-duty service members. RAND; 2018.
107
library(tipr)
adjust_hr_with_binary(
effect_observed = c(0.79, 0.87, 0.96),
exposed_confounder_prev = .04,
unexposed_confounder_prev = .06,
confounder_outcome_effect = 2)
What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?
108
library(tipr)
adjust_hr_with_binary(
effect_observed = c(0.79, 0.87, 0.96),
exposed_confounder_prev = .04,
unexposed_confounder_prev = .06,
confounder_outcome_effect = 2)
What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?
109
# A tibble: 3 × 5
hr_adjusted hr_observed exposed_con…¹ unexp…² confo…³
<dbl> <dbl> <dbl> <dbl> <dbl>
1 0.805 0.79 0.04 0.06 2
2 0.887 0.87 0.04 0.06 2
3 0.978 0.96 0.04 0.06 2
# … with abbreviated variable names
# ¹exposed_confounder_prev,
# ²unexposed_confounder_prev,
# ³confounder_outcome_effect
110
“If heavy alcohol consumption differed between groups, with 4% prevalence among metformin users and 6% among sulfonylureas users, and had an HR of 2 with lung cancer incidence the updated adjusted effect of metformin on lung cancer incidence would be an HR of 0.89 (95% CI: 0.81–0.98). Should an unmeasured confounder like this exist, our effect of metformin on lung cancer incidence would be attenuated and fall much closer to the null.
”
111
library(tipr)
sens <- adjust_hr_with_binary(
effect_observed = 0.96,
exposed_confounder_prev = .04,
unexposed_confounder_prev = .06,
confounder_outcome_effect = seq(1.1, 3.5, by = 0.1))
112
library(ggplot2)
ggplot(sens, aes(x = confounder_outcome_effect,
y = hr_adjusted)) +
geom_point()
113
114
115
library(tipr)
tip_hr_with_binary(
effect_observed = 0.96,
exposed_confounder_prev = .04,
unexposed_confounder_prev = .06)
116
library(tipr)
tip_hr_with_binary(
effect_observed = 0.96,
exposed_confounder_prev = .04,
unexposed_confounder_prev = .06)
117
# A tibble: 1 × 6
effect_adj…¹ effec…² expos…³ unexp…⁴ confo…⁵ n_unm…⁶
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0.96 0.04 0.06 3.27 1
# … with abbreviated variable names ¹effect_adjusted,
# ²effect_observed, ³exposed_confounder_prev,
# ⁴unexposed_confounder_prev,
# ⁵confounder_outcome_effect,
# ⁶n_unmeasured_confounders
118
# A tibble: 1 × 6
effect_adj…¹ effec…² expos…³ unexp…⁴ confo…⁵ n_unm…⁶
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0.96 0.04 0.06 3.27 1
# … with abbreviated variable names ¹effect_adjusted,
# ²effect_observed, ³exposed_confounder_prev,
# ⁴unexposed_confounder_prev,
# ⁵confounder_outcome_effect,
# ⁶n_unmeasured_confounders
119
“If heavy alcohol consumption differed between groups, with 4% prevalence among metformin users and 6% among sulfonylureas users, it would need to have an association with lung cancer incidence of 3.27 to tip this analysis at the 5% level, rendering the result inconclusive. Given that associations between lung cancer and alcohol consumption have not been reported to be this large, we may be able to rule this out as an impactful unmeasured confounder.
”
What is known about the unmeasured confounder?
Both exposure and outcome relationship is known
120
D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6
What is known about the unmeasured confounder?
Both exposure and outcome relationship is known
Only one of the exposure/outcome relationships is known
121
D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6
What is known about the unmeasured confounder?
Both exposure and outcome relationship is known
Only one of the exposure/outcome relationships is known
Nothing
is known
122
D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6
123
devtools::install_github(
“r-causal/tipr”
)
install.packages(“tipr”)
D’Agostino McGowan, L., (2022). tipr: An R package for sensitivity analyses for unmeasured confounders. Journal of Open Source Software, 7(77), 4495, https://doi.org/10.21105/joss.04495
THANKS!
124
@LucyStats
Lucy D’Agostino McGowan�
Department of Statistical Sciences
Wake Forest University
Images created with the assistance of DALL·E 2
Join us for an MS in Statistics!
stats.wfu.edu