1 of 125

Causal Quartet

When statistics alone

do not tell the full story

Lucy D’Agostino McGowan

@LucyStats�

Department of Statistical Sciences

Wake Forest University

2 of 125

lucymcgowan.com/talk

3 of 125

TABLE OF CONTENTS

CAUSAL INFERENCE

CAUSAL QUARTET

02

SENSITIVITY ANALYSES

03

01

Quick Primer

What should we adjust for?

What if we haven’t measured everything?

3

4 of 125

Causal inference

4

Does X cause Y?

X

Y

5 of 125

Potential Outcomes

5

6 of 125

Potential Outcomes

6

7 of 125

Potential Outcomes

7

8 of 125

Split Decision: Life Stories

8

Vicky, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

Award-winning actor, rapper, and producer Ice-T unveils a compelling memoir of his early life robbing jewelry stores until he found fame and fortune—while a handful of bad choices sent his former crime partner down an incredibly different path.

9 of 125

Ice-T & Spike

9

35 years in prison

Fame & fortune

One more heist

Abandons criminal life

Ice-T

35 years in prison

Fame & fortune

One more heist

Abandons criminal life

Spike

r-causal.org

10 of 125

Ice-T, Spike,

& co

10

.

.

.

Fame & fortune

35 years in prison

Fame & fortune

One more heist

Abandons criminal life

Ice-T

35 years in prison

One more heist

Abandons criminal life

Spike

r-causal.org

Fame & fortune

35 years in prison

One more heist

Abandons criminal life

n

.

.

.

.

.

.

Fame & fortune

35 years in prison

One more heist

Abandons criminal life

3

11 of 125

Ice-T, Spike,

& co

11

Fame & fortune

35 years in prison

Fame & fortune

One more heist

Abandons criminal life

Ice-T

35 years in prison

One more heist

Abandons criminal life

Spike

r-causal.org

Fame & fortune

35 years in prison

One more heist

Abandons criminal life

n

Fame & fortune

35 years in prison

One more heist

Abandons criminal life

3

.

.

.

.

.

.

.

.

.

12 of 125

Ice-T, Spike,

& co

12

Fame & fortune

35 years in prison

Fame & fortune

One more heist

Abandons criminal life

Ice-T

35 years in prison

One more heist

Abandons criminal life

Spike

r-causal.org

Fame & fortune

35 years in prison

One more heist

Abandons criminal life

n

Fame & fortune

35 years in prison

One more heist

Abandons criminal life

3

.

.

.

.

.

.

.

.

.

13 of 125

Consistency

13

14 of 125

Consistency

14

the outcome we observe

15 of 125

Consistency

15

the outcome we observe

is exactly equal to

16 of 125

Consistency

16

the outcome we observe

is exactly equal to

the potential outcome under the observed exposure

17 of 125

Exchangeability

17

the potential

outcomes

18 of 125

Exchangeability

18

are independent

the potential

outcomes

19 of 125

Exchangeability

19

are independent

of the exposure assignment given some measured factors

the potential

outcomes

20 of 125

Exchangeability

20

“No unmeasured confounders”

  • We have measured all Z
  • We have adjusted for all Z

X

Y

Z

21 of 125

Exchangeability

21

“No unmeasured confounders”

  • We have measured all Z
  • We have adjusted for all Z

Abandoning crimnal life vs

one more heist

Fame & fortune vs 35 years in prison

Z

22 of 125

Positivity

22

23 of 125

Positivity

23

For all individuals within strata of Z there exists a non-zero probability of receiving every exposure level.

24 of 125

Exchangeability

24

“No unmeasured confounders”

✓ We have measured all Z

  • We have adjusted for all Z

X

Y

Z

25 of 125

Causal Inference �is not a statistics problem

25

26 of 125

Causal Inference �is not a statistics problem

26

just

^

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

27 of 125

The problem

We have measured variables, what should we adjust for?

27

28 of 125

The problem

28

x

y

z

0.49

1.71

2.24

0.07

0.68

0.92

0.40

-1.60

-0.10

.

.

.

.

.

.

.

.

.

0.55

-1.73

-2.34

29 of 125

The problem

29

x

y

z

0.49

1.71

2.24

0.07

0.68

0.92

0.40

-1.60

-0.10

.

.

.

.

.

.

.

.

.

0.55

-1.73

-2.34

exposure

30 of 125

The problem

30

x

y

z

0.49

1.71

2.24

0.07

0.68

0.92

0.40

-1.60

-0.10

.

.

.

.

.

.

.

.

.

0.55

-1.73

-2.34

exposure

outcome

31 of 125

The problem

31

x

y

z

0.49

1.71

2.24

0.07

0.68

0.92

0.40

-1.60

-0.10

.

.

.

.

.

.

.

.

.

0.55

-1.73

-2.34

exposure

outcome

measured factor

32 of 125

Estimate the causal effect!

32

x

y

z

0.49

1.71

2.24

0.07

0.68

0.92

0.40

-1.60

-0.10

.

.

.

.

.

.

.

.

.

0.55

-1.73

-2.34

exposure

outcome

measured factor

33 of 125

A bit more info:

cor(x, z):

0.7

One unit increase in the exposure yields an average increase in the outcome of 1

The exposure and measured factor are positively correlated

33

34 of 125

To adjust or not adjust, that is the question

34

35 of 125

(1) Collider

35

X

Y

Z

36 of 125

(1) Collider

(2) Confounder

36

X

Y

Z

X

Y

Z

37 of 125

(1) Collider

(2) Confounder

(3) Mediator

37

X

Y

Z

X

Y

Z

X

Y

Z

38 of 125

(1) Collider

(2) Confounder

(4) M-Bias

(3) Mediator

38

X

Y

Z

U2

U1

X

Y

Z

X

Y

Z

X

Y

Z

39 of 125

(1) Collider

(2) Confounder

(4) M-Bias

Causal Quartet

(3) Mediator

39

X

Y

Z

U2

U1

X

Y

Z

X

Y

Z

X

Y

Z

40 of 125

40

X

Y

Z

41 of 125

41

X

Y

Z

42 of 125

42

X

Y

Z

43 of 125

43

X

Y

Z

U2

U1

44 of 125

44

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

45 of 125

(1) Collider

(2) Confounder

(4) M-Bias

(3) Mediator

45

X

Y

Z

U2

U1

X

Y

Z

X

Y

Z

X

Y

Z

46 of 125

(1) Collider

(2) Confounder

(4) M-Bias

(3) Mediator

46

X

Y

Z

U2

U1

X

Y

Z

X

Y

Z

X

Y

Z

47 of 125

(1) Collider

(4) M-Bias

(2) Confounder

(3) Mediator

47

X

Y

Z

U2

U1

X

Y

Z

X

Y

Z

X

Y

Z

48 of 125

(2) Confounder

(4) M-Bias

(1) Collider

(3) Mediator

48

X

Y

Z

U2

U1

X

Y

Z

X

Y

Z

X

Y

Z

49 of 125

(2) Confounder

(1) Collider

(4) M-Bias

(3) Mediator

49

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

U2

U1

50 of 125

50

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

51 of 125

51

52 of 125

52

Data-Generating Mechanism

True

Causal Model

True

Causal Effect

ATE adjusting

for Z

(1) Collider

Y ~ X

1

0.55

(2) Confounder

Y ~ X ; Z

0.5

0.5

(3) Mediator

Direct effect: Y ~ X ; Z

Total effect: Y ~ X

Direct effect: 0

Total effect: 1

0

(4) M-bias

Y ~ X

1

0.88

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

^

53 of 125

53

Data-Generating Mechanism

True

Causal Model

True

Causal Effect

ATE adjusting

for Z

(1) Collider

Y ~ X

1

0.55

(2) Confounder

Y ~ X ; Z

0.5

0.5

(3) Mediator

Direct effect: Y ~ X ; Z

Total effect: Y ~ X

Direct effect: 0

Total effect: 1

0

(4) M-bias

Y ~ X

1

0.88

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

^

54 of 125

54

Data-Generating Mechanism

True

Causal Model

True

Causal Effect

ATE adjusting

for Z

(1) Collider

Y ~ X

1

0.55

(2) Confounder

Y ~ X ; Z

0.5

0.5

(3) Mediator

Direct effect: Y ~ X ; Z

Total effect: Y ~ X

Direct effect: 0

Total effect: 1

0

(4) M-bias

Y ~ X

1

0.88

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

^

55 of 125

55

Data-Generating Mechanism

True

Causal Model

True

Causal Effect

ATE adjusting

for Z

(1) Collider

Y ~ X

1

0.55

(2) Confounder

Y ~ X ; Z

0.5

0.5

(3) Mediator

Direct effect: Y ~ X ; Z

Total effect: Y ~ X

Direct effect: 0

Total effect: 1

0

(4) M-bias

Y ~ X

1

0.88

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

^

56 of 125

56

Data-Generating Mechanism

True

Causal Model

True

Causal Effect

ATE adjusting

for Z

(1) Collider

Y ~ X

1

0.55

(2) Confounder

Y ~ X ; Z

0.5

0.5

(3) Mediator

Direct effect: Y ~ X ; Z

Total effect: Y ~ X

Direct effect: 0

Total effect: 1

0

(4) M-bias

Y ~ X

1

0.88

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

^

57 of 125

The problem:

do we adjust for Z?

57

x

y

z

0.49

1.71

2.24

0.07

0.68

0.92

0.40

-1.60

-0.10

.

.

.

.

.

.

.

.

.

0.55

-1.73

-2.34

58 of 125

Causal Inference �is not a statistics problem

58

just

^

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

59 of 125

The Solution

59

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

U2

U1

60 of 125

The Solution

60

partial

^

z_baseline

x_baseline

y_baseline

x_followup

y_followup

z_followup

1.89

0.71

1.82

0.06

0.51

-0.38

-1.35

-2.47

-3.58

-2.30

-2.79

-3.94

-2.11

-0.30

-0.91

-.32

-1.87

-1.14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-1.34

1.14

-0.67

-0.439

0.99

2.45

61 of 125

The Solution

61

z_baseline

x_baseline

y_baeline

x_followup

y_followup

z_followup

1.89

0.71

1.82

0.06

0.51

-0.38

-1.35

-2.47

-3.58

-2.30

-2.79

-3.94

-2.11

-0.30

-0.91

-.32

-1.87

-1.14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-1.34

1.14

-0.67

-0.439

0.99

2.45

pre-exposure

partial

^

62 of 125

The Solution

62

z_baseline

x_baseline

y_baseline

x_followup

y_followup

z_followup

1.89

0.71

1.82

0.06

0.51

-0.38

-1.35

-2.47

-3.58

-2.30

-2.79

-3.94

-2.11

-0.30

-0.91

-.32

-1.87

-1.14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-1.34

1.14

-0.67

-0.439

0.99

2.45

time 0

partial

^

63 of 125

The Solution

63

z_baseline

x_baseline

y_baseline

x_followup

y_followup

z_followup

1.89

0.71

1.82

0.06

0.51

-0.38

-1.35

-2.47

-3.58

-2.30

-2.79

-3.94

-2.11

-0.30

-0.91

-.32

-1.87

-1.14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-1.34

1.14

-0.67

-0.439

0.99

2.45

follow-up

partial

^

64 of 125

The Solution

64

z_baseline

x_baseline

y_baseline

x_followup

y_followup

z_followup

1.89

0.71

1.82

0.06

0.51

-0.38

-1.35

-2.47

-3.58

-2.30

-2.79

-3.94

-2.11

-0.30

-0.91

-.32

-1.87

-1.14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-1.34

1.14

-0.67

-0.439

0.99

2.45

exposure: sodium intake

partial

^

65 of 125

The Solution

65

z_baseline

x_baseline

y_baseline

x_followup

y_followup

z_followup

1.89

0.71

1.82

0.06

0.51

-0.38

-1.35

-2.47

-3.58

-2.30

-2.79

-3.94

-2.11

-0.30

-0.91

-.32

-1.87

-1.14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-1.34

1.14

-0.67

-0.439

0.99

2.45

outcome: systolic blood pressure

partial

^

66 of 125

The Solution

66

z_baseline

x_baseline

y_baseline

x_followup

y_followup

z_followup

1.89

0.71

1.82

0.06

0.51

-0.38

-1.35

-2.47

-3.58

-2.30

-2.79

-3.94

-2.11

-0.30

-0.91

-.32

-1.87

-1.14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-1.34

1.14

-0.67

-0.439

0.99

2.45

measured factor: proteinuria

partial

^

67 of 125

(1) Collider

(2) Confounder

(4) M-Bias

(3) Mediator

67

X

Y

Z

U2

U1

X

Y

Z

X

Y

Z

X

Y

Z

68 of 125

(1) Collider

(2) Confounder

(4) M-Bias

(3) Mediator

68

X

Y

Z

U2

U1

X

Y

Z

X

Y

Z

X

Y

Z

sodium intake

systolic blood pressure

proteinuria

69 of 125

69

70 of 125

70

time

X

Y

Z

X

Y

Z

baseline

followup

71 of 125

71

time

baseline

followup

Systolic blood pressure at follow up

X

Y

Z

X

Y

Z

Sodium intake

at baseline

Proteinuria at follow up

72 of 125

72

time

baseline

followup

Systolic blood pressure at follow up

X

Y

Z

X

Y

Z

Sodium intake

at baseline

Proteinuria at follow up

True Causal Effect: 1

Estimated Causal Effect: 0.55

73 of 125

73

time

X

Y

Z

X

Y

Z

baseline

followup

74 of 125

74

time

X

Y

Z

X

Y

Z

baseline

followup

Sodium intake

at baseline

Systolic blood pressure at follow up

Proteinuria at baseline

75 of 125

75

time

X

Y

Z

X

Y

Z

baseline

followup

Sodium intake

at baseline

Systolic blood pressure at follow up

Proteinuria at baseline

True Causal Effect: 1

Estimated Causal Effect: 1

76 of 125

The Solution

76

z_baseline

x_baseline

y_baseline

x_followup

y_followup

z_followup

1.89

0.71

1.82

0.06

0.51

-0.38

-1.35

-2.47

-3.58

-2.30

-2.79

-3.94

-2.11

-0.30

-0.91

-.32

-1.87

-1.14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-1.34

1.14

-0.67

-0.439

0.99

2.45

y_followup ~ x_baseline + z_baseline

partial

^

77 of 125

The Solution

77

Data-Generating Mechanism

True

Causal Model

True

Causal Effect

ATE adjusting for pre-exposure Z

(1) Collider

Y ~ X

1

1

(2) Confounder

Y ~ X ; Z

0.5

0.5

(3) Mediator

Direct effect: Y ~ X ; Z

Total effect: Y ~ X

Direct effect: 0

Total effect: 1

1

(4) M-bias

Y ~ X

1

0.88

^

partial

^

78 of 125

The Solution

78

Data-Generating Mechanism

True

Causal Model

True

Causal Effect

ATE adjusting for pre-exposure Z

(1) Collider

Y ~ X

1

1

(2) Confounder

Y ~ X ; Z

0.5

0.5

(3) Mediator

Direct effect: Y ~ X ; Z

Total effect: Y ~ X

Direct effect: 0

Total effect: 1

1

(4) M-bias

Y ~ X

1

0.88

^

partial

^

79 of 125

The Solution

79

Data-Generating Mechanism

True

Causal Model

True

Causal Effect

ATE adjusting for pre-exposure Z

(1) Collider

Y ~ X

1

1

(2) Confounder

Y ~ X ; Z

0.5

0.5

(3) Mediator

Direct effect: Y ~ X ; Z

Total effect: Y ~ X

Direct effect: 0

Total effect: 1

1

(4) M-bias

Y ~ X

1

0.88

^

partial

^

80 of 125

(2) Confounder

(1) Collider

(4) M-Bias

(3) Mediator

80

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

U2

U1

81 of 125

(2) Confounder

(1) Collider

(4) M-Bias

(3) Mediator

81

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

U2

U1

82 of 125

(2) Confounder

(1) Collider

(4) M-Bias

(3) Mediator

82

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

U2

U1

83 of 125

On M-Bias

  • The relationship between Z and the unmeasured confounders needs to be really large (Liu et al 2012)
  • “To obsess about the possibility of [M-bias] generates bad practical advice in all but the most unusual circumstances” (Rubin 2009)
  • There are (almost) no true zeros (Gelman 2011)
  • Asymptotic theory shows that induction of M-bias is quite sensitive to various deviations from the exact M-Structure (Ding and Miratrix 2014)

83

84 of 125

84

devtools::install_github(

“r-causal/quartets”

)

install.packages(“quartets”)

D'Agostino McGowan L, Barrett M (2023). �Causal inference is not just a statistical problem. Preprint arXiv:2304.02683v3.

85 of 125

TABLE OF CONTENTS

CAUSAL INFERENCE

CAUSAL QUARTET

02

SENSITIVITY ANALYSES

03

01

Quick Primer

What should we adjust for?

Thinking about

unmeasured confounding

85

86 of 125

The problem

We might not have measured all of the important variables

86

87 of 125

Quantifying unmeasured confounding

87

Cornfield

Rosenbaum & Rubin

Lin, Psaty, & Kronmal

Cinelli & Hazlett

88 of 125

88

89 of 125

WHAT YOU NEED

EXPOSURE

OUTCOME

EFFECT

OUTCOME

UNMEASURED

CONFOUNDER

EFFECT

EXPOSURE

UNMEASURED

CONFOUNDER

EFFECT

89

90 of 125

90

tipr

D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6

91 of 125

TIPPING POINT

What will tip our confidence bound to cross the null?

91

92 of 125

92

D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6

93 of 125

93

{action}_{effect}_with_{what}

D’Agostino McGowan, L., (2022). tipr: An R package for sensitivity analyses for unmeasured confounders. Journal of Open Source Software, 7(77), 4495, https://doi.org/10.21105/joss.04495

94 of 125

94

{action}_{effect}_with_{what}

tip_rr_with_continous()

D’Agostino McGowan, L., (2022). tipr: An R package for sensitivity analyses for unmeasured confounders. Journal of Open Source Software, 7(77), 4495, https://doi.org/10.21105/joss.04495

95 of 125

95

{action}_{effect}_with_{what}

tip_rr_with_continous()

adjust_coef_with_binary()

D’Agostino McGowan, L., (2022). tipr: An R package for sensitivity analyses for unmeasured confounders. Journal of Open Source Software, 7(77), 4495, https://doi.org/10.21105/joss.04495

96 of 125

96

97 of 125

QUESTION

Cancer

VERSUS SULFONYLUREAS

Metformin

97

98 of 125

ANALYSIS

98

  • New-user design
  • Matched 42,217 new metformin users to 42,217 new sulfonylurea users
  • Fit adjusted Cox proportional hazards model on the matched cohort

99 of 125

RESULTS

99

Lung Cancer

0.87 (0.79, 0.96)

Liver Cancer

0.46 (0.37, 0.57)

Colorectal Cancer

0.86 (0.75, 0.99)

OUTCOME

METFORMIN� (ADJ HAZARD RATIO)

100 of 125

What if alcohol consumption is an unmeasured confounder?

100

101 of 125

What if heavy alcohol consumption is prevalent among 4% of Metformin users and 6% of Sulfonylurea users?

101

Meadows SO, Engel CC, Collins RL, Beckman RL, Cefalu M,

Hawes-Dawson J, et al. 2015 health related behaviors survey:

Substance use among US active-duty service members. RAND; 2018.

102 of 125

102

library(tipr)

adjust_hr_with_binary(

effect_observed = c(0.79, 0.87, 0.96),

exposed_confounder_prev = .04,

unexposed_confounder_prev = .06,

confounder_outcome_effect = 2)

What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?

103 of 125

103

library(tipr)

adjust_hr_with_binary(

effect_observed = c(0.79, 0.87, 0.96),

exposed_confounder_prev = .04,

unexposed_confounder_prev = .06,

confounder_outcome_effect = 2)

What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?

104 of 125

RESULTS

104

Lung Cancer

0.87 (0.79, 0.96)

Liver Cancer

0.46 (0.37, 0.57)

Colorectal Cancer

0.86 (0.75, 0.99)

OUTCOME

METFORMIN� (ADJ HAZARD RATIO)

105 of 125

105

library(tipr)

adjust_hr_with_binary(

effect_observed = c(0.79, 0.87, 0.96),

exposed_confounder_prev = .04,

unexposed_confounder_prev = .06,

confounder_outcome_effect = 2)

What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?

106 of 125

What if heavy alcohol consumption is prevalent among 4% of Metformin users and 6% of Sulfonylurea users?

106

Meadows SO, Engel CC, Collins RL, Beckman RL, Cefalu M,

Hawes-Dawson J, et al. 2015 health related behaviors survey:

Substance use among US active-duty service members. RAND; 2018.

107 of 125

107

library(tipr)

adjust_hr_with_binary(

effect_observed = c(0.79, 0.87, 0.96),

exposed_confounder_prev = .04,

unexposed_confounder_prev = .06,

confounder_outcome_effect = 2)

What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?

108 of 125

108

library(tipr)

adjust_hr_with_binary(

effect_observed = c(0.79, 0.87, 0.96),

exposed_confounder_prev = .04,

unexposed_confounder_prev = .06,

confounder_outcome_effect = 2)

What if we assume the effect of alcohol consumption on lung cancer after adjusting for other confounders is 2?

109 of 125

109

# A tibble: 3 × 5

hr_adjusted hr_observed exposed_con…¹ unexp…² confo…³

<dbl> <dbl> <dbl> <dbl> <dbl>

1 0.805 0.79 0.04 0.06 2

2 0.887 0.87 0.04 0.06 2

3 0.978 0.96 0.04 0.06 2

# … with abbreviated variable names

# ¹​exposed_confounder_prev,

# ²​unexposed_confounder_prev,

# ³​confounder_outcome_effect

110 of 125

110

If heavy alcohol consumption differed between groups, with 4% prevalence among metformin users and 6% among sulfonylureas users, and had an HR of 2 with lung cancer incidence the updated adjusted effect of metformin on lung cancer incidence would be an HR of 0.89 (95% CI: 0.81–0.98). Should an unmeasured confounder like this exist, our effect of metformin on lung cancer incidence would be attenuated and fall much closer to the null.

111 of 125

111

library(tipr)

sens <- adjust_hr_with_binary(

effect_observed = 0.96,

exposed_confounder_prev = .04,

unexposed_confounder_prev = .06,

confounder_outcome_effect = seq(1.1, 3.5, by = 0.1))

112 of 125

112

library(ggplot2)

ggplot(sens, aes(x = confounder_outcome_effect,

y = hr_adjusted)) +

geom_point()

113 of 125

113

114 of 125

114

115 of 125

115

library(tipr)

tip_hr_with_binary(

effect_observed = 0.96,

exposed_confounder_prev = .04,

unexposed_confounder_prev = .06)

116 of 125

116

library(tipr)

tip_hr_with_binary(

effect_observed = 0.96,

exposed_confounder_prev = .04,

unexposed_confounder_prev = .06)

117 of 125

117

# A tibble: 1 × 6

effect_adj…¹ effec…² expos…³ unexp…⁴ confo…⁵ n_unm…⁶

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 0.96 0.04 0.06 3.27 1

# … with abbreviated variable names ¹​effect_adjusted,

# ²​effect_observed, ³​exposed_confounder_prev,

# ⁴​unexposed_confounder_prev,

# ⁵​confounder_outcome_effect,

# ⁶​n_unmeasured_confounders

118 of 125

118

# A tibble: 1 × 6

effect_adj…¹ effec…² expos…³ unexp…⁴ confo…⁵ n_unm…⁶

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 0.96 0.04 0.06 3.27 1

# … with abbreviated variable names ¹​effect_adjusted,

# ²​effect_observed, ³​exposed_confounder_prev,

# ⁴​unexposed_confounder_prev,

# ⁵​confounder_outcome_effect,

# ⁶​n_unmeasured_confounders

119 of 125

119

If heavy alcohol consumption differed between groups, with 4% prevalence among metformin users and 6% among sulfonylureas users, it would need to have an association with lung cancer incidence of 3.27 to tip this analysis at the 5% level, rendering the result inconclusive. Given that associations between lung cancer and alcohol consumption have not been reported to be this large, we may be able to rule this out as an impactful unmeasured confounder.

120 of 125

What is known about the unmeasured confounder?

Both exposure and outcome relationship is known

  • adjust_* functions

120

D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6

121 of 125

What is known about the unmeasured confounder?

Both exposure and outcome relationship is known

Only one of the exposure/outcome relationships is known

  • adjust_* functions
  • adjust_* functions in an array
  • tip_* functions

121

D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6

122 of 125

What is known about the unmeasured confounder?

Both exposure and outcome relationship is known

Only one of the exposure/outcome relationships is known

  • adjust_* functions in an array
  • tip_* functions in an array
  • tip_coef_with_r2() ground in the measured confounders
  • single number summaries: Robustness value r_value() & E-values e_value()
  • adjust_* functions
  • adjust_* functions in an array
  • tip_* functions

Nothing

is known

122

D’Agostino McGowan, L. Sensitivity Analyses for Unmeasured Confounders. Curr Epidemiol Rep 9, 361–375 (2022). https://doi.org/10.1007/s40471-022-00308-6

123 of 125

123

devtools::install_github(

“r-causal/tipr”

)

install.packages(“tipr”)

D’Agostino McGowan, L., (2022). tipr: An R package for sensitivity analyses for unmeasured confounders. Journal of Open Source Software, 7(77), 4495, https://doi.org/10.21105/joss.04495

124 of 125

THANKS!

124

@LucyStats

Lucy D’Agostino McGowan�

Department of Statistical Sciences

Wake Forest University

Images created with the assistance of DALL·E 2

125 of 125

Join us for an MS in Statistics!

  • 2 year program with small, personalized cohort
  • Research opportunities in faculty labs
  • All accepted students receive substantial financial aid!
  • Most students receive assistantships with 100% tuition scholarship, and students work 15-18 hours per week to earn a 10 month stipend in addition to their scholarship
  • All other students receive a partial scholarship, which covers more than 70% of tuition

stats.wfu.edu