Paper ID : 266
A Deep Learning Based
Ensemble Approach
for Gastrointestinal
Disease Detection with XAI
SABAH SUBSECTION
Dewan Ziaul Karim, Tasfia Anika Bushra
and Shoaib Ahmed Dipu
6th IEEE International Conference on Artificial Intelligence in Engineering and Technology
26-28 August 2024
Organizer and Technical Sponsor:
Co-Organizers:
IICAIET 2024
Content
01
02
03
04
05
06
07
Introduction
Prior Work
Proposed Methodology
Proposed Solutions
Result Analysis and Discussion
Future Works
Conclusion
IICAIET 2024
Introduction
Gastrointestinal disorders are conditions that affect the digestive system as a whole.
Polyps, tumors, infections, ulcerative colitis, and diverticulitis are some of the most prevalent reasons of death in people [1] [2].
Analyzing pictures and films of the Gastrointestinal tract is becoming tedious for gastroenterologist as number of patients and data have been increasing rapidly.
DL can play a major role to ease the whole process as it extracts the features automatically.
IICAIET 2024
Proposed
Research Project
IICAIET 2024
Prior Work
IICAIET 2024
IICAIET 2024
Proposed Methodology
IICAIET 2024
Custom CNN Model
+
Top 2 Pretrained Models
Fig 2. Way to build Ensemble Model
Ensemble Model
Fig 1. Workplan
IICAIET 2024
Dataset Details
IICAIET 2024
Fig 3. Sample images from the dataset
IICAIET 2024
Dataset Preprocessing
IICAIET 2024
IICAIET 2024
Custom CNN Model Architecture
IICAIET 2024
Fig 4. Custom CNN Model Architecture
Batch Normalization [9] and
Max Pooling [10] layers.
4 Dense layers.
Units: 1024, 512, 64, and 3 respectively.
L2 (.00001).
IICAIET 2024
Pretrained Models
IICAIET 2024
8 Pretrained Models
IICAIET 2024
Ensemble Model
IICAIET 2024
IICAIET 2024
Training Parameters
IICAIET 2024
IICAIET 2024
Result Analysis
Custom CNN
IICAIET 2024
Fig 5. Custom CNN Model Accuracy
Fig 6. Custom CNN Model Loss
IICAIET 2024
Result Analysis
Comparison with Pretrained Models
IICAIET 2024
Models | Training Accuracy (%) | Validation Accuracy (%) |
VGG19 | 95.80 | 92.58 |
VGG16 | 97.04 | 93.75 |
InceptionV3 | 98.19 | 96.41 |
MobileNetV2 | 99.17 | 96.58 |
InceptionResNetV2 | 98.31 | 96.91 |
DenseNet121 | 98.66 | 97.25 |
Xception | 98.13 | 97.33 |
ResNet50 | 98.84 | 97.41 |
Custom CNN | 98.68 | 97.58 |
IICAIET 2024
Result Analysis
Ensemble Model Results
IICAIET 2024
Fig 7. Ensemble Model Accuracy
IICAIET 2024
Result Analysis
Ensemble Model vs Custom Model
IICAIET 2024
Fig 8. Accuracy Comparison
Fig 9. Loss Comparison
IICAIET 2024
Result Analysis
Evaluation on Test Dataset
IICAIET 2024
Confusion Matrix
Fig 10. Confusion Matrix
IICAIET 2024
Result Analysis
Evaluation on Test Dataset
IICAIET 2024
Classification Report
Fig 11. Classification Report
IICAIET 2024
Result Analysis
Evaluation on Test Dataset
IICAIET 2024
ROC Curve and AUC Score
Fig 12. ROC Curve for 3 Classes
IICAIET 2024
Result Visualization Using XAI - LIME
IICAIET 2024
Fig 13. (a) Random Esophagitis Image (b) Top 5 superpixels using LIME
IICAIET 2024
IICAIET 2024
Fig 14. (a) Potential Positive Areas (b) Areas Having Weight Value of 0.1
Result Visualization Using XAI - LIME
IICAIET 2024
IICAIET 2024
Fig 15. Heatmap Visualization with LIME
Result Visualization Using XAI - LIME
IICAIET 2024
Future Works
IICAIET 2024
IICAIET 2024
Conclusion
IICAIET 2024
IICAIET 2024
References
IICAIET 2024
IICAIET 2024
THANK YOU
https://www.bracu.ac.bd/about/people/shoaib-ahmed-dipu
shoaib.ahmed@bracu.ac.bd
Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka, Bangladesh
Shoaib Ahmed Dipu
IICAIET 2024
SABAH SUBSECTION
6TH IEEE INTERNATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE IN ENGINEERING AND TECHNOLOGY
26-28 AUGUST 2024
IICAIET 2024