
Welcome to Lecture 17:
Tuples and Dictionaries
1) Open a Code Editor- your choice

2) Use Iclicker for attendance

3) Lecture 17 Guide: tinyurl.com/S24CS10L17

http://tinyurl.com/S24CS10L5

Agenda

● Review

● Tuples

● Dictionaries

Lecture 17 Guide: tinyurl.com/S24CS10L17

https://tinyurl.com/S24CS10L17

Announcements

● Midterm Review on Wednesday from 5-7PM Soda 606

● Project 4: Pyturis will be released on Thursday

● Midterm Retake on Friday, 1 to 4PM

○ Same logistics as Midterm

Lecture 17 Guide: tinyurl.com/S24CS10L17

https://tinyurl.com/S24CS10L17

COMPUTATIONAL THINKING +
Creative Problem Solving

CS10 is not a course about Snap! What we’re learning is
computational thinking and Creative Problem Solving

● How to use computational tools to solve problems.

● Using abstraction to manage complexity.

○ Detail removal

○ Generalization

4

Lecture 17 Guide: tinyurl.com/S24CS10L17

https://tinyurl.com/S24CS10L17

Review: Python List Basics

● We make a list in Python by putting the items in square brackets and separating them
with commas

● We can always get the length of the list by calling the len function

● We can access values in our list by indexing into the list using square brackets

some_list = [0, 10, 20, 30, 40, 50]

some_list[0] → 0
some_list[4] → 40
some_list[len(some_list)-1] → 50
some_list[-1] → 50

len(some_list) → 6

List Basics: Index and Slicing

● We can slice our list to grab a subset of items in our list by using square brackets with
a colon between the start and end indices
○ The left side is inclusive and the right side is exclusive

○ If you leave on of the endpoints off, by default it will go to the end of the list,
depending on which side is left off

some_list = [0, 10, 20, 30, 40, 50]
middle_items = some_list[1:5]
print(middle_items)

some_list = [0, 10, 20, 30, 40, 50]
some_list[1:5] → [10, 20, 30, 40]

some_list[:3] → [0, 10, 20]
some_list[2:] → [20, 30, 40, 50]
some_list[:] → [0, 10, 20, 30, 40, 50]

List Basics: Index and Slicing

● You can change the value of an item in a list by accessing that item using indexing and
then re-assigning it to the new value

some_list = [0, 10, 20, 30, 40, 50]
middle_items = some_list[1:5]
print(middle_items)

some_list[3] = 35
print(some_list) → [0, 10, 20, 35, 40, 50]

Built-in List Methods

● There are many other built-in functions in python that can be used to change a list
● Most of these functions will actually mutate or change the list itself rather than

return a new list

some_list = [0, 10, 20, 30, 40, 50]
middle_items = some_list[1:5]
print(middle_items)

some_list.pop()
some_list.append(4)
some_list.remove(3)

List Comprehension

Function Variable List

List Comprehension

● Concise ways to iterate over a list or string and perform functions or operations over

the items

List Comprehension with Strings

●

List Comprehension

● We can also use it to filter out items

List Comprehension

Function Variable List Condition

List Comprehension

Function 1 Variable ListCondition Function 2

List Comprehension

● Using If and Else in list comprehension

List Comprehension Summary
map

[f(element) for element in iterable]

keep

[element for element in iterable if cond(element)]

map+keep

[f(element) for element in iterable if cond(element)]
[f(element) if cond(element) else other for element in iterable]

Intro to Tuples

Tuples are similar to lists:

● You create them using comma separated lists inside parentheses rather than square
brackets

● You can access values at specific indices with square brackets just like with lists, you
just can’t change the values

● Tuples are immutable, lists are mutable

some_tuple = (1, 5, 10, 4, 7, 16, 2)

some_list = [1, 5, 10, 4, 7, 16, 2]

Why use Tuples

Immutability: Since tuples are immutable, they can be used as keys in
dictionaries and elements of sets, which require immutable data types.

Data Integrity: The immutability of tuples ensures that the data cannot be
changed, which is useful for fixed collections of items.

Performance: Tuples can be more efficient than lists in terms of memory
usage and performance.

Creating a Tuple

my_tuple = (1, 'apple', 3.14, True, 'Python')

Access Tuple Elements

my_tuple = (1, 'apple', 3.14, True, 'Python')

print(my_tuple[0]) # Output: 1

print(my_tuple[2]) # Output: 3.14

print(my_tuple[-1]) # Output: Python

Tuple Operations - Concatenate

tuple1 = (1, 2, 3)

tuple2 = ('a', 'b', 'c')

result = tuple1 + tuple2

print(result) # Output: (1, 2, 3, 'a', 'b', 'c')

Tuple Operations - Repeat

my_tuple = ('repeat',)

result = my_tuple * 3

print(result)

Output: ('repeat', 'repeat', 'repeat')

Slicing Tuples

my_tuple = (1, 2, 3, 4, 5)

print(my_tuple[1:4])

Output: (2, 3, 4)

Tuple Unpacking - Unpack elements into separate variables

person = ('Alice', 30, 'Engineer')

name, age, profession = person

print(name) # Output: Alice

print(age) # Output: 30

print(profession) # Output: Engineer

Iterating Over Tuples

my_tuple = (1, 'apple', 3.14, True, 'Python')

for item in my_tuple:

print(item)

Task 1

● 1) make a list of integers [1,2,3,4,5]

● 2) write a function that

○ that takes in a list

○ returns the minimum and maximum as a tuple

○ Hint:

■ Create 2 variables -> Min and Max

■ Return a Tuple with Min and Max as the

values

http://www.youtube.com/watch?v=zVHWhLme2NQ

Intro to Python Dictionaries

● A dictionary in Python is an unordered collection of key-value pairs.

● Each key is unique and maps to a value.

● Dictionaries are mutable, meaning you can change their content after creation

Accessing Values

You can access values in a dictionary by using their corresponding keys.

Adding and Updating Entries
You can add new key-value pairs or update existing ones.

Intro to Dictionaries

● Unlike lists, dictionaries do not have any pre-defined order

● A collection of un-ordered key-value pairs

○ The key points us to the value

● We can have repeated values but not repeated keys

○ Values can be mutable but keys must be immutable

phonebook = {}
phonebook["Alonzo"] = "713-474-2731"
phonebook["Oznola"] = "713-474-3750"
phonebook["Tom Bates"] = "510-981-7100"

print(phonebook["Tom Bates"])

Removing Entries
You can remove key-value pairs using the del keyword or the pop method.

You can have more than 1 value for each key!

Dictionaries vs Lists

Why Dictionaries

Fast Lookups/Search: Dictionaries provide fast lookups for retrieving values
using keys.

Unique Keys: Each key in a dictionary is unique, preventing duplicate entries.

Flexible Data Structures: Dictionaries can store various types of data, including
other dictionaries.

Dictionary Methods
keys(): Returns a view object of all the keys in the dictionary.

values(): Returns a view object of all the values in the dictionary.

Dictionary Methods

items(): Returns a view object of all the key-value pairs in the dictionary.

get(): Returns the value for a specified key if the key is in the dictionary.

Dictionary Methods

update(): Updates the dictionary with elements from another dictionary object or
from an iterable of key-value pairs.

Iterating through a Dictionary

- Iterate through keys
for k in my_dictionary.keys():
for k in my_dictionary:

- Iterate through values
for v in my_dictionary.values():

- Iterate through keys and values
for k,v in my_dictionary.items():

- Check if k is a key in dictionary
k in my_dictionary.keys()
k in my_dictionary

- Check if v is a value in dictionary
v in my_dictionary.values()

Task 2: How many A’s?

1) Make a dictionary:

a) Test_scores = { "a": 90, "b": 70, "c":

100, "d": 60 }

2) Write a function that takes in a

dictionary and returns the number of

scores 90 or above

http://www.youtube.com/watch?v=zVHWhLme2NQ

Task 3: Sum Values

1) Make a dictionary:
a) my_dict = { "a": 10, "b": 20, "c":

30, "d": 40 }

2) Write a function that takes in a
dictionary and returns the sum of the
values

Challenge:

-how could you modify this challenge to
work with a dictionary that has multiple
data types as values?

http://www.youtube.com/watch?v=zVHWhLme2NQ

1) Go back through Labs and see what students need

to know…build basic activities from that

