</ e S A e S e S
e g

Tuples and Dictionaries

1) Open a Code Editor- your choice

l 2) Use Iclicker for attendance
i 3) Lecture 17 Guide: tinyurl.com/S24CS10L17

Snap! L

m-"x!-m-"x-m."ﬁ

http://tinyurl.com/S24CS10L5

= u

S e /A e O s O
‘ Agenda ,4
® Review ‘
N
' e Tuples l‘

N ® Dictionaries '
)

/
)
i i
l

Lecture 17 Guide: tinyurl.com/S24CS10L17 l‘
Im."x

DA e L . T e e

1

https://tinyurl.com/S24CS10L17

L R T e/ g TR S e
e § e §

Announcements

i e Midterm Review on Wednesday from 5-7PM Soda 606
' ® Project 4: Pyturis will be released on Thursday
‘ e Midterm Retake on Friday, 1 to 4PM

&

:
\ |
! 4

lmu-m—' A‘

o Same logistics as Midterm

Lecture 17 Guide: tinyurl.com/S24CS10L17

https://tinyurl.com/S24CS10L17

o s SR i e s SR S i S 4
e g]

i
CS10 is not a course about Snap! What we're learning is l‘
computational thinking and Creative Problem Solving '

l

e How to use computational tools to solve problems.

e Using abstraction to manage complexity.
o Detail removal [
o Generalization ‘
b

Im."“

\
%
|
\

Lecture 17 Guide: tinyurl.com/S24CS10L17 l‘

‘-mb"x-m-"ﬁ

https://tinyurl.com/S24CS10L17

LG/ R TS o R/ S - R 2 e S/
e § e §

Review: Python List Basics /

e We make a list in Python by putting the items in square brackets and separating them ‘

with commas l‘

some_list = [O, 10, 20, 30, 40, 50]

%

| -

We can always get the length of the list by calling the len function '
)

len(some_list) - 6

® We can access values in our list by indexing into the list using square brackets

some_list[@] - © ‘
some_list[4] - 40

some_list[len(some_list)-1] - 50 ‘
some_list[-1] - 50 l

W .

. T e SR . e N T T e

= u

LG/ R TS o R/ S - R 2 e S/
e § e §

‘ List Basics: Index and Slicing /
® \We canslice our list to grab a subset of items in our list by using square brackets with ‘
- a colon between the start and end indices ‘
' o The left side is inclusive and the right side is exclusive l
some_list = [0, 10, 20, 30, 40, 50]
some_1list[1:5] - [10, 20, 30, 40]
)

/

o If you leave on of the endpoints off, by default it will go to the end of the list,
depending on which side is left off

i some_list[:3] - [8, 10, 20] (

some_list[2:] - [20, 30, 40, 50]
some_list[:] - [0, 10, 20, 30, 40, 50]

List Basics: Index and Slicing

e

N

\ ® You can change the value of an item in a list by accessing that item using indexing and '
)

then re-assigning it to the new value

/
{ some_list[3] = 35

print(some_list) - [0, 10, 20, 35, 40, 50] /

|
\

Im."x P . e R Y e T e

= u

‘ Built-in List Methods

N

—-“__]

' ® There are many other built-in functions in python that can be used to change a list

® Most of these functions will actually mutate or change the list itself rather than
\ return a new list '
/ |

some_list.append(4) [
some_list.remove(3) ‘

{ some_list.pop()

. S o TR - It R S R 7 i G
P e e

!

List Comprehension

Function Variable List

W

List Comprehension

e Concise ways to iterate over a list or string and perform functions or operations over
the items

>>> num_list = [160, 200, 300,

>»> X = [x *¥ 2 for in num_ list]

>22 X
[200, 400, 600, 800, 1000, 1200]

List Comprehension with Strings

=S =9

List Comprehension
® \We can also use it to filter out items

>>> num_list = [106€

> = [x * 2 for

>>2 X
[800, 1000, 1200]

map ()) over B keep items @ from B

=S =9 \

. S o TR - It R S R 7 i G
P e e

Function Variable List Condition

i List Comprehension
N

List Comprehension

i

' Function 1 Condition Function 2 Variable List

?

= u

‘ List Comprehension

xS O e e SR = S A S T
® Using If and Else in list comprehension

word list = ["a", “b", "c", "d*, "e"

]
new list = [1tem[3] if len(item) 3 else item for item in word 115t]

>»>['Vvic', 'fav', 'color', 'is', 'gre']

= u

L o T 7 S O TR - i G
e § e §

‘ List Comprehension Summary

4
map ‘
i [f(element) for element in iterable] ‘
keep
[element for element in iterable if cond(element)] '
)

’ map+keep
[f(element) for element in iterable if cond(element)]

[f(element) if cond(element) else other for element in iterable]

4
|
|
B

\
lmu-m—'

Intro to Tuples

\

Tuples are similar to lists:

N

P—-ﬁ'—-ﬁ—]

® You create them using comma separated lists inside parentheses rather than square
brackets
® You can access values at specific indices with square brackets just like with lists, you
just can’t change the values
)

" ® Tuples are immutable, lists are mutable

i some_tuple = (1, 5, 10, 4, 7, 16, 2) i

' \

Im."x P . e R Y e T e

some list = [1, 5, 10, 4, 7, 16, 2]

s e S e S o e S
g

Why use Tuples /
Immutability: Since tuples are immutable, they can be used as keys in ‘
N dictionaries and elements of sets, which require immutable data types. ‘

Data Integrity: The immutability of tuples ensures that the data cannot be
}‘ changed, which is useful for fixed collections of items. '

Performance: Tuples can be more efficient than lists in terms of memory
usage and performance.

\ 4

|

Emu-m-m

= u

oS e e A O e S
‘ Creating a Tuple

S
' my_tuple = (1, 'apple’, 3.14, True, 'Python')

|
w
| |
| |
I 1
w

= u

oS e e A O e S
‘ Access Tuple Elements

S
' my_tuple = (1, 'apple’, 3.14, True, 'Python')

! print(my_tuple[0]) # Output: 1

i
print(my_tuple[2]) # Output: 3.14 ‘
i

{ print(my_tuple[-1]) # Output: Python

- oS e e A O e S
Tuple Operations - Concatenate

tuplel = (1, 2, 3)

tuple2 = ('a', 'b’, 'c")
result = tuplel + tuple2

i
print(result) # Output: (1, 2, 3, 'a’, 'b’, 'c') '
H

- oS e e A O e S
Tuple Operations - Repeat

my_tuple = (‘repeat’,)

result = my_tuple * 3

print(result)

i
Output: ('repeat’, 'repeat’, 'repeat’) '
H

- oS e e A O e S
Slicing Tuples

my_tuple=(1, 2, 3, 4, 5)
print(my_tuple[1:4])

Output: (2, 3, 4)

oS O S 7 = O e e O
ge==" R

Tuple Unpacking - Unpack elements into separate variables @
person = (‘'Alice’, 30, 'Engineer’) ‘

name, age, profession = person l‘
print(name) # Output: Alice '

print(profession) # Output: Engineer ‘

!
|
% print(age) # Output: 30
l
|

- oS e e A O e S
‘ Iterating Over Tuples

my_tuple = (1, 'apple’, 3.14, True, 'Python')

=
' for item in my_tuple:

|
" \
% int(itern '
| |

\

e 1) make a list of integers [1,2,3,4,5]
e 2) write a function that
o that takes in a list
o returns the minimum and maximum as a tuple
o Hint:
m Create 2 variables -> Min and Max

m Return a Tuple with Min and Max as the

values

http://www.youtube.com/watch?v=zVHWhLme2NQ

‘ Intro to Python Dictionaries

e Adictionary in Python is an unordered collection of key-value pairs.

SR ~. - S . T S
S T S e]

' ® Each key is unique and maps to a value.

e Dictionaries are mutable, meaning you can change their content after creation

~am"

oS e e A O e S
‘ Accessing Values

You can access values in a dictionary by using their corresponding keys.

Lreadtlnd a a1 Nnal

my_dict = {

print(my_dict["name"])
print(my_dict["age"])

print(my_dict["profession"

Adding and Updating Entries

You can add new key-value pairs or update existing ones.

Adding

my_dict["locat

print(my_ dlct)

Qutput:

Upaating an ¢

my_dict["age"] =
print(my_dict)

1

-mel” £ 1 Name

o SE A e e S e G
‘ Intro to Dictionaries

e Unlike lists, dictionaries do not have any pre-defined order

i ® A collection of un-ordered key-value pairs

o The key points us to the value
‘ ® We can have repeated values but not repeated keys

\

/
phonebook = {}

{ phonebook|[

o Values can be mutable but keys must be immutable

phonebook|[]
phonebook|[

e
n 1
|
I
—~——
D S s T TS e S

' print(phonebook| 1)

Im."x!-m."x-m."A

——W

Removing Entries

You can remove key-value pairs using the del keyword or the pop method.

Using del keyword

print(my_dict)

M J o o f |l mmmas | &
+ Qutput: 1 name

4

Using pop method

age = my_dict.pop(u
print(age) # Ou
print(my_dict) # Ou

del my_dict["location"]

] |
ayc)
EpuL: 3l

tput:

You can have more than 1 value for each key!

my dict = {
"name": "Alice",
‘age": 30,
"profession": ["engineer", "professor"],

print(my_dict)

Halllc

=S =9 \

indices

e A/ D - o SO~ ¥ S S/ o SR 7 <% e
e § e, {

Why Dictionaries /

Fast Lookups/Search: Dictionaries provide fast lookups for retrieving values ‘

using keys. ‘

Unique Keys: Each key in a dictionary is unique, preventing duplicate entries. l

Flexible Data Structures: Dictionaries can store various types of data, including '
)

other dictionaries.

s IR D ST It RN/ SR SN - I S/
e e e s

‘ Dictionary Methods

keys(): Returns a view object of all the keys in the dictionary.

N

~am"

oS e e A O e S
‘ Dictionary Methods

items(): Returns a view object of all the key-value pairs in the dictionary.
N

‘ print(my_dict.items())

&

print(my_dict.get("name"))

get(): Returns the value for a specified key if the key is in the dictionary.

. T e SR . e N T T e

~am"

S AR S " G s SN "
‘ Dictionary Methods /

update(): Updates the dictionary with elements from another dictionary object or ‘

N

' from an iterable of key-value pairs. l‘

N my_dict.update({"age":

print(my_dict)

- oS e e A O e S
‘ Iterating through a Dictionary

. - Iterate through keys - Checkifkis akey indictionary
for k in my dictionary.keys(): k in my dictionary.keys()
for k in my dictionary: k in my dictionary

\ - Iterate through values - Checkifvisavalueindictionary

i
" for v in my dictionary.values(): v in my dictionary.values () '
I!

- Iterate through keys and values

{ for k,v in my dictionary.items() :

>) =

Task 2: How many A’s?

1) Make a dictionary:
a) Test scores={"a":90,"b": 70, "c":
100, "d": 60 }

2) Write a function that takes in a
dictionary and returns the number of
scores 90 or above

http://www.youtube.com/watch?v=zVHWhLme2NQ

N = " NG — =

Task 3: Sum Values

1) Make a dictionary:
a) my_dict={"a":10,"b": 20, "c":
30, "d": 40 }

2) Write a function that takes in a
dictionary and returns the sum of the
values

Challenge:

-how could you modify this challenge to
work with a dictionary that has multiple
data types as values?

http://www.youtube.com/watch?v=zVHWhLme2NQ

—-‘__‘—]

1) Go back through Labs and see what students need l‘
to know...build basic activities from that '
>

S e e e S e e O e SO
S S 1

Exercise 6: Base Frequency
Given a DNA sequence string, calculate the frequency of each base pair (i.e. the number of times that each letter appears in the sequen

>>> base_freq("AAGTTAGTCA")

{IIAH: 4, IICH: l, IIGII: 2, IITH: 3}

Hint: you can easily add to the value stored in a dictionary by using the following trick:

>>> grades
{"Alice": 90, "Eve": 100}
>>> grades["Alice"] += 5
>>> grades
{"Al1ice": 95, "Eve": 100}

|
|

- R R . S
e

-MI

Exercise 7.1: Substitute Characters

Write a function substitute_chars that takes as input a string and a dictionary. The dictionary will have characters as keys and values, which represent what
to replace certain characters with (as shown above). This function should return a string with each character substituted with that characters's value from the
dictionary. If a character doesn't exist as a key in the dictionary, it should be left alone.

55> replacements - {IISII:IIZH’ IIEII:HUH, IlTIl:HPH, IlAII:lIMII}

>>> substitute_chars("SECRET MESSAGE", replacements)
"ZUCRUP MUZZMGU" [

A A e

Exercise 7.2: Invert Dictionary

Write a function invert_dict that takes as input a dictionary. The output should be a new dictionary that has each key, value pair reversed. The input
dictionary should be left unchanged.

>>>Noripinal = [IAR BxE SRUBH Ryt I n 7L
>>> dnvert_dict(original)

MR S Y s U B

>>> original

{Uall st SNBSS e i]

Question: What does this function do when some of the values in the dictionary are identical? Can a dictionary have identical keys? Talk with your partner, then try
using your function on one such dictionary, like this: invert_dict({"A":"x", "B":"z", "C":"Z"}) and see if you were right.

