
SpiNNaker Workshop
September 2018

Simple Data I/O and visualisation

Alan Stokes, Andrew Rowley

Contents
Summaries

● Standard PyNN support summary.
External Device module

● What is it, why we need it?
● Usage caveats.

Input
● Injecting spikes into a executing PyNN script.

Output
● Live streaming of spikes from a PyNN script.

Visualisation
● Live visualisation.

2

Standard PyNN support (Summary)
● Supports post execution gathering of certain attributes:

○ aka transmitted spikes, voltages etc.

3

p1input

SpiNNaker
import spynnaker8 as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp(), label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray(spike_times=[0]),
 label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(),
 p.StaticSynapse(weight=0.1, delay=3))
p1.record([“spikes”, “v”])

4

● Supports post execution gathering of certain attributes:
○ aka transmitted spikes, voltages etc.

import spynnaker8 as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp(), label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray(spike_times=[0]),
 label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(),
 p.StaticSynapse(weight=0.1, delay=3))
p1.record([“spikes”, “v”])
p.run(5000)
spikes = p1.get_data(“spikes”)
v = p1.get_data(“v")

Standard PyNN support (Summary)

p1input

SpiNNaker

PyNN Script

Memory reads

● Supports spike sources of:
○ Spike Source Array, Spike source poisson.

5

Standard PyNN support (Summary)

input p1

SpiNNaker
import spynnaker8 as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp(), label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray(spike_times=[0])
 , label=“input”)

● Supports spike sources of:
○ Spike Source Array, Spike source poisson.

6

Standard PyNN support (Summary)

import spynnaker8 as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp(), label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray(spike_times=[0]),
 label=“input”)
input2 = p.Population(1, p.SpikeSourcePoisson(rate=100, duration=50),
 label=’input2’)

p1
input

input2

SpiNNaker

Restrictions
1. Recorded data is stored on SDRAM on each chip.
2. Data to be injected has to be known up-front, or rate based.
3. No support for closed loop execution with external devices.

7
http://www.conrad.com/ce/en/product/191516/Arexx-RA1-PRO-Metallic-Robot-Arm

 SPIKES SPIKES

Standard PyNN support (Summary)

during execution

Why? what?
1. Contains functionality for PyNN scripts.
2. Not official PyNN!!!

What does it Includes?

External Device Module

8

 SPIKES

2. Live streaming of events
 from populations.

 SPIKES

COMMANDS

1. Live injection of events and
commands into SpiNNaker

SPIKES via
spinnLink interface

3. External devices support:
Covered Later

Caveats:
● Injection and live output currently only usable only with the

ethernet connection,
● Limited bandwidth of:

○ A small number of spikes per millisecond time step, per ethernet,
○ Shared with both injection and live output,

● Best effort communication,
● Has a built in latency,
● Spinnaker commands not supported by other simulators,
● Loss of cores for injection and live output support,
● You can only feed a live population to one place.

9

Z
External Device Plugin Z

Z

Injecting spikes into PyNN scripts

10

import spynnaker8 as p

p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp(), label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray(spike_times=[0]),
 label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(),
 p.StaticSynapse(weight=0.1, delay=3))
loop(synfire connection)
loop_forward = list()
for i in range(0, n_neurons - 1):
 loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
p.Projection(pop_forward, pop_forward, Frontend.FromListConnector(loop_forward))

PyNN script changes

p1input

SpiNNaker

Injecting spikes into PyNN scripts

11

import spynnaker8 as p

p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input_injector = p.Population(
 1, p.external_devices.SpikeInjector(), label=”injector)
input_proj = p.Projection(input_injector, p1, p.OneToOneConnector(),
 p.StaticSynapse(weight=0.1, delay=3))
loop(synfire connection)
loop_forward = list()
for i in range(0, n_neurons - 1):
 loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
p.Projection(pop_forward, pop_forward, Frontend.FromListConnector(loop_forward))

PyNN script changes: Declaring an injector population

p1input
injector

SpiNNaker

Injecting spikes into PyNN scripts

12

............
create python injector
run_condition = Condition()
running = True

def send_spike(label, sender):
running = True
run_condition.acquire()

if running:
run_condition.release()

 sender.send_spike(label, 0, send_full_keys=True)
else:

run_condition.release()

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Python
injector

Injecting spikes into PyNN scripts

13

............
create python stopper
def stop_flow(label, sender):

run_condition.acquire()
running = False
run_condition.release()

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Python
injector

Python
stopper

Injecting spikes into PyNN scripts

14

............
set up python injector connection
live_spikes_connection =
 p.external_devices.SpynnakerLiveSpikesConnection(
 send_labels=[“spike_sender”])

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Python
injector

Connection

Python
stopper

Injecting spikes into PyNN scripts

15

............
set up python injector connection
live_spikes_connection =
 p.external_devices.SpynnakerLiveSpikesConnection(
 receive_labels=None, local_port=19996,
 send_labels=[“spike_sender”])
register python injector with injector connection
live_spikes_connection.add_start_resume_callback(

“spike_sender”, send_spike)

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Connection

Python
injector

Python
stopper

Injecting spikes into PyNN scripts

16

............
set up python injector connection
live_spikes_connection =
 p.external_devices.SpynnakerLiveSpikesConnection(
 receive_labels=None, local_port=19996,
 send_labels=[“spike_sender”])
register python injector with injector connection
live_spikes_connection.add_start_resume_callback(

“spike_sender”, send_spike)
register python stopper with connection
live_spikes_connection.add_pause_stop_callback(

“spike_sender”, stop_flow)
p.run(500)

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Connection

Python
injector

Python
stopper

Injecting spikes into PyNN scripts

17

Behaviour with
(SpikeSourceArray)

Behaviour with Live
injection!

SAME!!!!!

BUT BORING!!!!

Live output from PyNN scripts

import spynnaker8 as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp(), label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray(spike_times=[0]),
 label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(),
 p.StaticSynapse(weight=0.1, delay=3))

18

PyNN script changes: declaring live output population

p1input

SpiNNaker

Live output from PyNN scripts

import import spynnaker8 as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp(), label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray(spike_times=[0]),
 label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(),
 p.StaticSynapse(weight=0.1, delay=3))
declare a live output for a given population.
p.external_devices.activate_live_output_for(p1)

19

PyNN script changes: declaring live output population

p1input

SpiNNaker

Live
support

Live output from PyNN scripts
...............
declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
 for neuron_id in neuron_ids:
 print “Received spike at time {} from {}-{}”
 .format(time, label, neuron_id)

20

PyNN script changes: python receiver

p1input

SpiNNaker

Live
support

Python
receiver

Live output from PyNN scripts
...............
declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):

for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”

 .format(time, label, neuron_id)
set up python live spike connection
live_spikes_connection =
 p.external_devices.SpynnakerLiveSpikesConnection(
 receive_labels=[“receiver”], local_port=19995, send_labels=None)

21

PyNN script changes: python receiver

p1input

SpiNNaker

Live
support

connection

Python
receiver

Live output from PyNN scripts
...............
declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):

for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”

 .format(time, label, neuron_id)
set up python live spike connection
live_spikes_connection =
 p.external_devices.SpynnakerLiveSpikesConnection(
 receive_labels=[“receiver”], local_port=19995, send_labels=None)
register python receiver with live spike connection
live_spikes_connection.add_receive_callback(“receiver”, receive_spikes)
p.run(500)

 22

PyNN script changes: python receiver

p1input

SpiNNaker

Live
support

connection

Python
receiver

Technical Detail!!!
Notification protocol under the hood!

● Everything so far uses the
notification protocol.

● It supplies data to translate
spikes into population ids.

23

Technical Detail!!!
Notification protocol under the hood!

● Everything so far uses the
notification protocol.

● It supplies data to translate
spikes into population ids.

24

Technical Detail!!!
Notification protocol under the hood!

● Everything so far uses the
notification protocol.

● It supplies data to translate
spikes into population ids.

25

Technical Detail!!!
Notification protocol under the hood!

● Everything so far uses the
notification protocol.

● It supplies data to translate
spikes into population ids.

26

Technical Detail!!!
Notification protocol under the hood!

● Everything so far uses the
notification protocol.

● It supplies data to translate
spikes into population ids.

27

Technical Detail!!!
Notification protocol under the hood!

● Everything so far uses the
notification protocol.

● It supplies data to translate
spikes into population ids.

● Auto-pause-and-resume
functionality will result
In steps 4-8 being repeated.

28

Technical Detail!!!
Notification protocol under the hood!

● Everything so far uses the
notification protocol.

● It supplies data to translate
spikes into population ids.

● Auto-pause-and-resume
functionality will result
In steps 4-8 being repeated.

29

Technical Detail!!!
Notification protocol under the hood!

● Everything so far uses the
notification protocol.

● It supplies data to translate
spikes into population ids.

● Auto-pause-and-resume
functionality will result
In steps 4-8 being repeated.

30

Technical Detail!!!
Notification protocol under the hood!

● Everything so far uses the
notification protocol.

● It supplies data to translate
spikes into population ids.

● Auto-pause-and-resume
functionality will result
In steps 4-8 being repeated.

● If you have more than 1 system
running to inject and/or receive,
then you need to register this
with the notification protocol.

31

Injecting spikes into PyNN scripts

32

............
register socket addresses for each system
p.external_devices.register_database_notification_request(
 hostname=”local_host”
 notify_port=19990,
 ack_port=19992)
p.external_devices.register_database_notification_request(
 hostname=”local_host”
 notify_port=19993,
 ack_port=19987)
p.external_devices.register_database_notification_request(
 hostname=”local_host”
 notify_port=19760,
 ack_port=19232)

PyNN script changes:
registering a system to the notification protocol

System

System 1

System 2

Notification
Protocol

Thanks for listening

33

Any questions?!

ZZ
Z

