EvTexture: Event-driven Texture Enhancement for Video Super-Resolution

Dachun Kai¹, Jiayao Lu¹, Yueyi Zhang¹², Xiaovan Sun¹²

¹University of Science and Technology of China, Hefei, China ²Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

Motivation

On Machine Learning

■ Video super-resolution (VSR) aims at restoring high-resolution (HR) videos from their low-resolution (LR) counterparts.

- Due to the lack of texture details in LR videos, we notice that current VSR methods, with or without event signals, still suffer from blurry textures or jitter effects, resulting in large errors in texture regions.
- We observe that event signals are not only with high temporal resolution but also full of high-frequency dynamic details, which are desirable for texture restoration in VSR.

Contribution

- We propose the first event-driven scheme for texture restoration in VSR.
- propose recovering high-frequency textural information We progressively by our presented texture enhancement branch coupled with an Iterative Texture Enhancement (ITE) module.
- Our proposed texture restoration method achieves state-of-the-art performance on four VSR benchmarks and especially excels in restoring texture-rich clips.

Qualitative Comparisons

Two-branch Structure: Our EvTexture adopts a bidirectional recurrent network, where features are propagated forward and backward. At each timestamp, it includes a motion branch and a parallel texture branch to explicitly enhance the restoration of texture regions.

$$F_{t \to t-1} = S(I_t^{LR}, I_{t-1}^{LR}), f_t^M = W(f_{t-1}, F_{t \to t-1}),$$

$$f_t^T = \mathcal{A}(f_{t-1}, \varepsilon_{t-1}^{LR}, I_t^{LR}), f_t = \mathcal{R}(I_t^{LR}, f_t^B, [f_t^M, f_t^T]),$$

where S is the optical flow model, \mathcal{W} is the warping operation, \mathcal{A} is the ITE module, and \mathcal{R} are some residual blocks.

Iterative Texture Enhancement: In the texture branch, we propose the ITE module to progressively enhance the propagation feature across multiple iterations. This module leverages high-frequency textural information from events, along with context information from the current frame.

$$\begin{split} f_{t}^{c} &= \mathcal{C}(I_{t}^{LR}), \ f_{t-1}^{v,i} = \mathcal{T}\left(\widehat{\mathcal{V}}_{t-1}(i)\right), \\ h_{t}^{i} &= \mathcal{G}\left(h_{t}^{i-1}, \left[f_{t}^{c}, f_{t-1}^{v,i}\right]\right), \ \Delta_{t}^{i} = \mathcal{R}\left(h_{t}^{i}\right), \\ f_{t}^{i} &= f_{t}^{i-1} + \Delta_{t}^{i}, \ f_{t}^{T} = f_{t-1} + \sum_{t} \Delta_{t}^{i}, \end{split}$$

where C is the context extractor, T is the texture extractor, G is the GRU-based texture updater.

Discussion

Experiment

Quantitative Comparisons

ıt			Vid4			DEDC4	W OOK T
e	Calendar	City	Foliage	Walk	Average	RED54	vimeo-90K-1
	23.98/0.8143	27.83/0.8112	26.34/0.7560	31.06/0.9153	27.30/0.8242	31.09/0.8800	37.61/0.9489
	23.87/0.8094	27.66/0.8050	26.47/0.7710	30.96/0.9148	27.32/0.8265	31.42/0.8909	37.18/0.9450
	24.07/0.8143	27.86/0.8111	26.54/0.7705	31.08/0.9158	27.46/0.8290	31.67/0.8948	37.47/0.9476
	24.65/0.8270	29.92/0.8428	26.41/0.7652	31.15/0.9167	27.90/0.8380	31.30/0.8850	37.84/0.9498
	24.50/0.8288	28.05/0.8212	26.90/0.7868	31.71/0.9236	27.87/0.8413	32.39/0.9069	37.79/0.9500
	24.55/0.8334	28.35/0.8363	26.98/0.7824	31.86/0.9251	27.94/0.8443	32.75/0.9113	38.15/0.9527
	24.52/0.8296	28.33/0.8308	26.78/0.7754	31.89/0.9258	27.88/0.8404	32.19/0.9006	38.20/0.9530
3	21.53/0.6932	26.01/0.7068	24.33/0.6651	27.39/0.8574	24.84/0.7330	26.87/0.7790	34.62/0.9185
3	25.17/0.8548	29.30/0.8846	27.31/0.8187	31.91/0.9265	28.46/0.8701	31.47/0.8919	37.56/0.9490
3	26.10/0.8756	31.24/0.9087	28.12/0.8475	32.67/0.9366	29.51/0.8909	32.79/0.9174	38.23/0.9544
3	26.44/0.8859	31.82/0.9217	28.21/0.8542	32.86/0.9381	29.78/0.8983	32.93/0.9195	38.32/0.9558

Vimeo-90K-1	Mathad	Vimeo-90K-T						
2.0k-2123 ²¹⁴⁴ Texture Histogram	Method	Easy	Medium	Hard				
Medium Threshold	EDVR	41.98/0.975	35.10/0.942	30.40/0.894				
1529Hard Threshold	BasicVSR	41.55/0.973	34.63/0.937	29.97/0.886				
2	IconVSR	41.73/0.974	34.86/0.939	30.19/0.890				
	BasicVSR++	41.98/0.975	35.09/0.941	30.38/0.893				
<u>U</u> 1.0k-	RVRT	42.43/0.976	35.69/0.946	30.73/0.902				
5	VRT	42.47/0.976	35.73/0.947	30.74/0.902				
578	EGVSR	38.75/0.959	32.15/0.905	27.90/0.836				
0.5 <i>R</i> -366	EBVSR	41.55/0.973	35.09/0.941	30.49/0.896				
133 36	EvTexture	<u>42.45</u> /0.977	35.83/0.948	31.21/0.908				
	# of clips	3,907	2,345	1,563				
0.0 0.2 0.4 0.6 0.8 1.0 Texture Magnitude	Avg. Tex. Mag.	0.16	0.32	0.49				