
NativeIO
Performant and generic storage for the web

Emanuel Krivoy, fivedots@chromium.org

mailto:fivedots@chromium.org

What are we trying to solve?
Challenge

Give developers a storage primitive
that has similar performance and
flexibility to native, with all the
goodness of the web.

Use cases

● Performant SQLite, LevelDB,
etc. for the web

● Fast and persistent filesystem
for WebAssembly

● Fine grained control over large
data through storage primitives

How does it look?
Filesystem operations

interface NativeIO {

 FileHandle open(String name);

 void delete(String name);

 void rename(String oldName, String newName);

 List<String> getAll();

};

File operations

interface FileHandle {

 int read(SharedArrayBuffer buffer, int offset);

 int write(SharedArrayBuffer buffer, int offset);

 void setLength(int length);

 int getLength();

 void flush();

 void close();

};

Get all and rename

var hello = nativeIO.open("hello");
var world = nativeIO.open("world");
// Returns [“hello”, “world”]
nativeIO.getAll();

hello.close();
nativeIO.rename("hello", "small");
// Returns [“small”, “world”]
nativeIO.getAll();

Write and read
var handle = nativeIO.open("foo");
// Simplified from SharedArrayBuffer
var writeBuffer = [0, 1, 0];
// Returns 3, the number of bytes written
handle.write(writeBuffer, 0);
handle.flush();

var readBuffer = [0, 0];
// Returns 2, the number of bytes read
handle.read(readBuffer, 1);
// readBuffer -> [1, 0]

Some examples

State of the project
Now

● Enthusiastic partner feedback
● Prototype available in Chrome
● Emscripten filesystem makes

trying it out easier
● Benchmarks to compare with

legacy storage and sync vs. async

Open questions

● What are the right benchmarks
to verify performance?

● What are other use cases that
might benefit?

● Where can we improve the API
surface?

https://github.com/fivedots/nativeio-explainer#trying-it-out
https://github.com/fivedots/nativeio-emscripten-fs

Thanks!
If you have any comments or questions please reach to us in our

Discourse or explainer

https://discourse.wicg.io/t/proposal-nativeio/4967
http://github.com/fivedots/nativeio-explainer

Appendix: Use cases in more detail
● We’ve actually ported SQLite and

LevelDB to validate our API.
Libraries could be distributed as
Wasm modules

● Caching large assets for future
sessions, with full control of access

● Managing memory
consumption by swapping
active/inactive segments of data
between memory and NativeIO

https://github.com/fivedots/sqlite-wasm
https://github.com/fivedots/leveldb-wasm

Appendix: Sync vs. async
Context

● WebAssembly has issues
suspending and resuming while
handling asynchronous calls

● Technologies like Asyncify solve
this at a performance cost

● We ran an SQLite benchmark
measure the slowdown

Benchmark results

● Async version was overall ~3
times as slow

● Significantly slower (~30x)
while reading and writing

● More research needed to
validate results and pinpoint
the cause

https://emscripten.org/docs/porting/asyncify.html
https://sqlite.org/src/file/test/speedtest1.c

