NativelO

Performant and generic storage for the web

Emanuel Krivoy, fivedots@chromium.org

mailto:fivedots@chromium.org

What are we trying to solve?

Challenge

Give developers a storage primitive
that has similar performance and
flexibility to native, with all the
goodness of the web.

Use cases

Performant SQLite, Level DB,
etc. for the web

Fast and persistent filesystem
for WebAssembly

Fine grained control over large
data through storage primitives

How does it look?

Filesystem operations File operations
> FileHandle {
read(SharedArrayBuffer buffer, offset);
NativeIO { write(SharedArrayBuffer buffer, offset);

FileHandle open(String name);
setLength(length);
delete(String name);
getLength();
rename(String oldName, String newName);
flush();

List<String> getAll();
}s close();

};

Some examples

Get all and rename

hello nativelIO. ("hello");
world nativelIO. ("world");
// Returns [“hello”, “world”]
nativeIO. O);
hello. 0);
nativeIO. ("hello", "small");
// Returns [“small”, “world”]
nativeIO. O);

Write and read

handle nativeIO. ("foo");
// Simplified from SharedArrayBuffer
writeBuffer [0, 1, O];
// Returns 3, the number of bytes written
handle. (writeBuffer, 0);
handle. O;

readBuffer [0, O]1;
// Returns 2, the number of bytes read
handle. (readBuffer, 1);
// readBuffer -> [1, @]

State of the project

Now

Enthusiastic partner feedback
Prototype available in Chrome
Emscripten filesystem makes
trying it out easier

Benchmarks to compare with
legacy storage and sync vs. async

Open questions

What are the right benchmarks
to verify performance?

What are other use cases that
might benefit?

Where can we improve the API
surface?

https://github.com/fivedots/nativeio-explainer#trying-it-out
https://github.com/fivedots/nativeio-emscripten-fs

Thanks!

If you have any comments or questions please reach to us in our
Discourse or explainer

https://discourse.wicg.io/t/proposal-nativeio/4967
http://github.com/fivedots/nativeio-explainer

Appendix: Use cases in more detail

We’ve actually ported SOLite and
LevelDB to validate our APL
Libraries could be distributed as
Wasm modules

Caching large assets for future
sessions, with full control of access

Managing memory
consumption by swapping
active/inactive segments of data
between memory and NativelO

https://github.com/fivedots/sqlite-wasm
https://github.com/fivedots/leveldb-wasm

Appendix: Sync vs. async

Context

e WebAssembly has issues
suspending and resuming while
handling asynchronous calls

e Technologies like Asyncify solve
this at a performance cost

e We ran an SQLite benchmark
measure the slowdown

Benchmark results

e Async version was overall ~3
times as slow

e Significantly slower (~30x)
while reading and writing

® More research needed to
validate results and pinpoint
the cause

https://emscripten.org/docs/porting/asyncify.html
https://sqlite.org/src/file/test/speedtest1.c

