

GETH
Geth (Go Ethereum) is a command line tool
implemented in Go that runs a full Ethereum
node.

We’ll be using geth to:

● Create a new wallet

● Initialize our private chain

● Mine smart contracts & transactions

Docs: https://godoc.org/github.com/ethereum/go-ethereum
Source: https://github.com/ethersphere/go-ethereum

https://godoc.org/github.com/ethereum/go-ethereum
https://github.com/ethersphere/go-ethereum

SWARM
Swarm is a distributed storage platform and
content distribution service built as a native
layer to Ethereum.

We’ll be using swarm to:

● Upload uplink packets and save swarms
content hash in our smart contract.

● Retrieve uplink packets

Docs: https://swarm-guide.readthedocs.io/en/latest/
Source: https://github.com/ethersphere/go-ethereum/tree/master/swarm

https://swarm-guide.readthedocs.io/en/latest/
https://github.com/ethersphere/go-ethereum/tree/master/swarm

1. Create a directory for the source code
> mkdir -p $GOPATH/src/github.com/ethereum

2. Clone repository
> cd $GOPATH/src/github.com/ethereum
> git clone https://github.com/ethereum/go-ethereum

NOTE: Checkout to latest stable version - v1.7.3

INSTALL GETH & SWARM

https://github.com/ethereum/go-ethereum

3. Install geth and swarm
> cd go-ethereum
> go install ./cmd/geth/
> go install ./cmd/swarm/

4. Check if everything installed properly.
To go install command creates the project binaries in the
workspace’s bin directory (located at $GOPATH/bin).

> cd $GOPATH/bin
> ./geth version && ./swarm version

INSTALL GETH & SWARM

DEMO APP
The demo app uses Truffle, a development framework
for Ethereum that allows us to easily compile, link
and deploy smart contracts.

In addition, the demo app contains:

● Genesis file

● Smart contract for TTN service

● Node server for connection between TTN -> Web3

● Front end app

http://truffleframework.com/

> npm install -g truffle

> git clone https://github.com/async-la/ttn-eth

> cd ttn-eth

> npm install

DEMO APP

https://github.com/async-la/ttn-eth

Designate a directory for the blockchains database and
account keystore. I recommend adding this to your
~/.bashrc, ~/.bash_profile, or whatever your shell uses.

> echo "export DATADIR=/path/to/myDataDir" >> ~/.bashrc

> source ~/.bashrc

CREATE DATA DIRECTORY

> geth --datadir $DATADIR account new

After you’ve entered your passphrase, you’ll receive the
public address of your new account. You must remember
this passphrase to unlock your account in the future.

CREATE AN ACCOUNT

Every blockchain starts with the genesis block.
The settings of that initial block and the rest of the
blockchain are defined in a single JSON file.

GENESIS BLOCK

> geth --datadir $DATADIR init genesis.json

GENESIS BLOCK

> geth --datadir $DATADIR --rpc console --rpccorsdomain '*'

STARTING GETH

> swarm --bzzaccount $BZZ --datadir $DATADIR --ens-api '' --corsdomain '*'

STARTING SWARM

Smart contracts are account holding objects on the
Ethereum blockchain and code functions and can interact
with other contracts, make decisions, store data, and
send ether to others.

Smart contracts run on the Ethereum Virtual Machine(EVM)
and have no access to network, filesystem or other
processes.

SMART CONTRACT

SMART CONTRACT

Contracts are located in your project's `contracts/`
directory. Contract need to be compiled on initial
deployment and after any changes.

Smart contracts are written in Solidity and will have a
file extension of .sol

> truffle compile

COMPILING SMART CONTRACT

Migrations help us deploy contracts to the Ethereum
network and are responsible for staging our deployment
tasks. Truffle provides a special Migration contract that
keeps a history of previously run migrations.

> truffle migrate

MIGRATING SMART CONTRACT

`server.js` uses TTN’s Node.JS SDK and web3 to store our
devices and uplink packets in our smart contract.

Breakdown:

● Set provider for web3
● Fetch accounts (required to pay for transactions)
● Create an instance to our deployed contract
● Initialize TTN application and data clients
● Register uplink event for data client

> node server.js

BACKEND

Sample front end application demonstrating how to
retrieve devices stored in our smart contract and their
payload data stored on swarm.

> npm start

FRONTEND

● Check that the genesis block is pre-filled with the
correct wallet address.

● Remember to unlock your wallet before migrating
contracts and sending transactions. (default is 5 min)

● Make sure you’ve started mining - `miner.start()`

TROUBLESHOOTING

