Neopepsee:

accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information

Chris Milianta, Stefania del Rosario, Jovonny Trinh

What are neoantigens?

- Neopeptide fragments that are induced by somatic mutations, some of which can induce a T-cell response
- Only found in cancer/tumor cells, which is why they have recently become targets for immunotherapy
- They are presented on the surface of a tumor cell by MHC-I molecules

Current Issues with Neoantigen Prediction

- Large number of false-positive predictions of Neoantigens exist
- Genome level applications are limited
 - Relies on arbitrary cut-offs of predicted MHC-I binding affinities.
 - Some genes are not included in analysis. Ex. isoform-specific gene epression, immune signature-related, etc...
 - Analysis requires complex computation processes reserved for bioinformatics experts

What is Neopepsee?

- A machine-learning based program that was constructed from 14 immunogenicity features
- Aim is to enhance accuracy in predicting neoantigens
- Automatically selects mutated peptide sequences from raw RNA-sequence data and a compiled list of somatic mutations
- Was tested on melanoma, leukemia, and stomach cancer data sets

Overall Workflow of Neopepsee

Methods: Neopepsee parameters Identification of potential predictors for immunogenicity:

14 predictors in 3 categories
(A) MHC-binding and presentation
(B) Amino acid characteristics
(C) Complex scores

Table S1. Potential features for immunogenicity prediction.

Feature Description

A. MHC binding and presentation

*IC50	Binding affinity between peptide and MHC
*Rank	Percentile rank generated by comparing the peptide's IC50 against those of a set of random peptides from SWISSPROT database.
MHC score	MHC class I binding affinity into a MHC class I pathway likelihood score
TAP score	Prediction of transporter associated with antigen processing transport efficiency
Cleavage score	Prediction of proteasomal cleavage
*Combined score	Combined prediction score
*Immunogenicity score	Relative ability of a peptide/MHC complex to elicit an immune response
B. Amino acid characteristic	s
*Hydrophobicity	Hydrophobicity score of the peptide
*Polarity & Charged score	Polarity and charged score of the peptide
Molecular size	Molecular size of the peptide
Entropy	The sum of entropy of each amino acid
C. Sequence similarity to kn	own epitopes and other auxiliary information
#DAI	IC50 difference between wild-type and mutant peptides
*AAPPs	Connectivity between the peptide and binding site of the MHC
*Similarity score	Similarity score between the peptide and known epitopes

Methods: Neopepsee Parameters

Positive set:

Epitopes that exhibited positive T-cell response in humans & were highly conserved to human proteins in Swiss-Prot

Negative set:

Randomly selected Peptides from Single Nucleotide Polymorphisms to conserve naturally occurring ratio of neoantigens (1:48)

Table S2. Summary of data sets used in this study.

Training set name	Peptides	final	Description			
Positive training set	1,113	311	Calis JJA, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, et al. (2013) Properties of MHC Class I Presented Peptides That Enhance Immunogenicity. PLoS Comput Biol 9(10); Known immunogenic epitopes			
Negative training set	28,927,063	14,930	dbSNP - common no known medical impact (v.141)			

Methods: Feature Selection

А											
Feature	Sim	.831	.190	834	.190	819	.240	.536	.070	.040	291
	IC:0	.936	.130	.934	.130	820	.140	NA	.090	059	.171
	RANK	.913	-100	.914	.110	899	200	.531	.070	.052	.134
	DAI	.758	.110	.776	.100	600	.060	.521	.050	022	191
	Comb	,664	140	.672	.150	.629	.080	.515	.040	.022	.145
	Hyd	.743	.050	.743	.080	.550	.040	522	.040	.014	.139
	P&C	.662	.040	.657	.040	662	050	513	.030	.008	063
	MHC	.749	.060	.756	.060	656	.050	.508	.030	018	.011
	AAPPs	,696	.040	696	.040	512	.020	516	.030	.008	094
	imm	,604	.030	.605	.030	.526	.030	.511	.020	.003	050
	Ent	.549	.020	.550	.020	.521	.030	.504	.020	.001	.023
	Mol	.537	.020	.539	.020	.511	.030	.504	.020	.000	.014
	GAUD	AUCI	UPPC) UNP	NB(A	UPRC) RF	(AUC) RE(A	UPRC) SV	NAUC)	UPRC)	loGain Co	relation
		0		<u>8</u>	Method						%rank

- IC50
- Rank
- Combined score
- Immunogenicity score
- Hydrophobicity

- Polarity and charged score
- DAI
- AAPPs
- Similarity

Results: Evaluation of Neoantigen Prediction in Neopepsee

Area under curve = probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one

Results: Tests on Independent Experimental Data

Neopepsee compared to traditional methods for neoantigen predictions.

Results: Application to the TCGA-STAD Dataset...

Results: Application to the TCGA-STAD Dataset...

Variable	Catagony		Univariate anal	lysis	Multivariate analysis			
vanable	Category	HR	95% CI	P	HR	95% CI	P	
Neoantigens	negative v positive (ref)	3.1	1.18 to 8.47	0.022*	2.2	1.04 to 4.82	0.040*	
Stage	III, IV v I, II (ref)	2.4	1.14 to 5.08	0.021*	2.0	1.25 to 3.16	0.004*	
Sex	female v male (ref)	0.9	0.44 to 2.10	0.923	1.1	0.72 to 1.86	0.545	
Age	≥65 v <65 (ref)	1.1	0.73 to 1.76	0.571	1.0	0.66 to 1.63	0.878	
Cytolytic activity (Rooney, et al)	high v low (ref)	0.8	0.52 to 1.30	0.398	0.8	0.49 to 1.25	0.306	
Microsatellite instability (MSI)	MSI v MSS (ref)	0.9	0.54 to 1.43	0.617	1.0	0.61 to 1.65	0.989	

*P-values <0.05; HR, hazard ratio; CI, confidence interval; MSS, microsatellite stable

- Efficient method to maximize neoantigen predictions.
 - Neopepsee can be applied to identify putative neoantigens, and can also be used to compare neoantigens with known immune epitopes. The analysis results can be used for prognostic/predictive biomarker discovery or to design antigens for cancer vaccines.

Relevance

"

- Goals for neoantigen prediction software is to classify patients who will benefit from immunotherapy, or to design a personalized cancer vaccine.
 - Neopepsee will enable the efficient analysis
 personal somatic mutation profiles and
 identify potential neopeptides for
 personalized vaccination.