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Li et al., 2014: What a Nasty day: Exploring
Mood-Weather Relationship from Twitter
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Figure 3: Positive/Negative mode analysis regarding multiple meteorological factors. Red solid line corresponds to 0 line. Black
dotted lines correspond to boundary of confidence interval. Black solid line corresponds to regression curve. y-axis corresponds to
smooth regression value from GAM model. Positive value of smooth regression means positive contribution to up-mood state while
negative value means the opposite. Label for y-axis corresponds to S(meteorological factor, degree of freedom)
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August 2008; Accepted 13 November 2008; Published online 19 November 2008;
Corrected 19 February 2009

Detecting influenza epidemics using search
engine query data

Jeremy Ginsbergl, Matthew H. Mohebbil, Rajan S. Patell, Lynnette
BrammerZ, Mark S. Smolinskil & Larry Brilliantl

1. Google Inc., 1600 Amphitheatre Parkway, Mountain View, California 94043,
USA

2. Centers for Disease Control and Prevention, 1600 Clifton Road, NE, Atlanta,
Georgia 30333, USA


https://www.nature.com/nature/journal/v457/n7232/full/nature07634.html

PNAS, 2014
10.1073/pnas.1320040111

Experimental evidence of massive-scale emotional
contagion through social networks

Adam D. I. Kramer®', Jamie E. Guillory®?, and Jeffrey T. HancockP*<

3Core Data Science Team, Facebook, Inc., Menlo Park, CA 94025; and Departments of °Communication and “Information Science, Cornell University, Ithaca,
NY 14853

(" Significance E

We show, via a massive (N = 689,003) experiment on Facebook, that emotional states can be
transferred to others via emotional contagion, leading people to experience the same emotions without
their awareness. We provide experimental evidence that emotional contagion occurs without direct
interaction between people (exposure to a friend expressing an emotion is sufficient), and in the
complete absence of nonverbal cues.



http://www.pnas.org/content/111/24/8788.full
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PSYCHOLOGICAL AND COGNITIVE SCIENCES

PNAS is publishing arl Editorial ExEression of Concern Jre-
garding the following article: “Experimental evidence of massive-
scale emotional contagion through social networks,” by Adam D. 1.
Kramer, Jamie E. Guillory, and Jeffrey T. Hancock, which
appeared in issue 24, June 17, 2014, of Proc Natl Acad Sci
USA (111:8788-8790; first published June 2, 2014; 10.1073/
pnas. 1320040111). This paper represents an important and emerg-
ing area of social science research that needs to be approached
with sensitivity and with vig;

Questions have been raised about the principles of informed
consent and opportunity to opt out in connection with the re-
search in this paper. The authors noted in their paper, “[The
work] was cons1stent with Facebook’s Data Use Pohcy, to Wthh

“Because th1s expenment was conducted by F acebook, Inc for
1nternal purposes the Cornell Umver51ty IRB [Instltutlonal Re-

nell’s Human Research Protectlon Program.” This statement has
since been confirmed by Cornell University.



BIG DATA

The Parable of Google Flu:
Traps in Big Data Analysis

David Lazer,"?* Ryan Kennedy,'** Gary King,® Alessandro Vespignani®®®

Trends (GFT) made headlines

but not for a reason that Google
executives or the creators of the flu
tracking system would have hoped.
Nature reported that GFT was pre-
dicting more than double the pro-
portion of doctor visits for influ-
enza-like illness (ILI) than the Cen-
ters for Disease Control and Preven-
tion (CDC), which bases its esti-
mates on surveillance reports from
laboratories across the United States
(1, 2). This happened despite the fact
that GFT was built to predict CDC
reports. Given that GFT is often held
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In February 2013, Google Flu

Science, March 2014

Large errors in flu prediction were largely
avoidable, which offers lessons for the use
of big data.

150

[y

o

o
|

Error (% baseline)
3
|

1

v

o o
| |

Lagged CDC

Google Flu + CDC

Google starts estimating
high 100 out of 108 weeks

A\,

07/01/09

07/0'1/11 07/0'1/12
Data

07/0'1/13

DU RIS TIT TUT T U TS

of 108 weeks starting with August
2011 (see the graph). These errors
are not randomly distributed. For
example, last week’s errors predict
this week’s errors (temporal auto-
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https://gking.harvard.edu/files/gking/files/0314policyforumff.pdf

Cihon & Yasseri, 2016: A Biased Review of Biases in Twitter

Studies on Political Collective Action

This literature offers insight into particular social phenomena on Twitter, but often fails
to use standardized methods that permit interpretation beyond individual studies.
Moreover, the literature fails to ground methodologies and results in social or
political theory, divorcing empirical research from the theory needed to interpret it.
Rather, investigations focus primarily on methodological innovations for social media
analyses, but these too often fail to sufficiently demonstrate the validity of such
methodologies.
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NASA HAS CONFIRMED
THAT THE ASTEROID IS
HEADED DREC)I’LY FOR US.
...YES, A QUESTION?

WHAT ROLE HAS SOCIAL
MEDIA PLAYED IN THIS
ASTERDID'S ORBIT?
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HAS TWITIER CHANGED THE WAY WE
RESPOND TO ASTEROID THREATS?

WELL, IT$ MADE THE
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https://doi.org/10.3389/fphy.2016.00034
https://doi.org/10.3389/fphy.2016.00034

Why does this happen?
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DSS is being done without social scientists!

A final challenge for computational social science is that, in spite of many
thousands of papers published on topics related to social networks, financial
crises, crowdsourcing, influence and adoption, group formation, and so on,
relatively few are published in traditional social science journals or even
attempt to engage seriously with social scientific literature. The result is that
much of computational social science has effectively evolved in isolation
from the rest of social science, largely ignoring much of what social scientists have
to say about the same topics, and largely being ignored by them in return.

Duncan J. Watts (Microsoft Research): Computational Social Science: Exciting
Progress and Future Directions. The Bridge on Frontiers of Engineering,
December 20, 2013, Volume 43, Issue 4
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https://www.nae.edu/Publications/Bridge/106112/106118.aspx
https://www.nae.edu/Publications/Bridge/106112/106118.aspx

Eur. Phys. J. Special Topics 214, 325-346 (2012)
(© The Author(s) 2012. This article is published THE EUROPEAN
with open access at Springerlink.com PHYSICAL JOURNAL

DOI: 10.1140/epjst /e2012-01697-8 PECIAL TOPICS

Regular Article

Manifesto of computational social science
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AT THE CROSSROADS:
LESSONS AND CHALLENGES IN
COMPUTATIONAL SOCIAL SCIENCE

EDITED BY: .avier Borae-Holthoefer. Yamir Moreno and Taha Yasseri
PUBLISHED IN: Frontiers in Physics



Niche for social scientis o

Computer Machine Math &
Science Learning Statistics

s
"l have the solution, but it works only in % Unicorn
the case of spherical cows in a vacuum™. ED
= @
Traditional Traditional

Software Research




And they know they need you!

Olemme fyysikkotaustaisia Aalto-yliopiston tutkijoita tekemassa hakemusta
MATINE:lle koskien aatteiden ja ideologioiden muodostumista ja kehittymista
agenttipohjaisissa simulaatioissa, ja etsimme hakemukseen halukkaita
yhteistyokumppaneita sosiaalitieteiden puolelta. Lahestymme
tutkimusaihettamme sen oletuksen kautta, etta ihmisten paaasiallisena viettina on
maksimoida oma "paremmuutensa” sosiaalisessa ymparistossaan. Tama
viitekehys on lahella Adlerin yksilopsykologian koulukunnan perusajatuksia, ja
siina ideologioita voidaan kuvata tapoina laittaa asiat ja ihmiset arvojarjestyksiin.

Hakemus on jatettava viimeistaan 14.6.2017, joten toivomme yhteistyotarjouksia mahdollisimman
pian, ja pahoittelemme tiukasta aikataulusta mahdollisesti aiheutuvaa vaivaa.
Yhteystiedot: Prof. Kimmo Kaski, kimmo.kaski'at'aalto.fi, FT Jan Snellman, jan.snellman'at'aalto.fi



What to learn?

1. Knowledge of easy to use end-user data processing and exploration tools
o Easy to use for their intended purpose, but limited
2. Knowledge of the fundamentals concepts of programming
o Frees you to process your data more efficiently
o Allows you to more freely apply analyses etc based on ready libraries
and tutorials on the Internet
3. High-level understanding of what types of things can be accomplished with
advanced CS methods
o To be able to communicate in collaborative projects
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Longer term = HELDIG -

Deep and significant progress in social scief Com puter [S)a.ta Eflac.hine Mth‘8
in other words, will require not only new dat Y ¢ _<3MiNg Statistics

and methods but also new institutions tha e
are designed from the ground up to foster ;

e Unicorn
long-term, large-scale, multidisciplinary, © Digital Social
multimethod, problem-oriented social EE] HELDIG ™ Science
science research. To succeed, such an Tradit onal Traditional

institution will require substantial investment, Software Research
on a par with existing institutes for mind, brain, : _
and behavior, genomics, or cancer, as well as \ !
the active cooperation of industry and Subjec

: o=k [N — el |
blect Matter /

government partners. \ pertise
Duncan J. Watts (Microsoft Research): \ —T
Computational Social Science: Exciting Progress and lj ‘ /
Future Directions. The Bridge on Frontiers of \ T

Enaineerina December 20 2013 Volume 43 |Issue 4
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METH4DH background questionnaire

Pertinent background information

If you want to tell us more deeply about your study subject or interests, as they relate to the course

Your answer

Why are you taking this course?

Your answer

What would you especially like to learn during this course /
where would you like us to focus on?

Your answer

SUBMIT

Never submit passwords through Google Forms.
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Challenge 1 - access to data Metzler et al, 2016: Who is Doing

Computational Social Science?, SAGE

white paper, September 2016

e One of the biggest
problems cited by

resea rCh ers d Oi ng blg Figure 10 Data types used by respondents in most recent research involving big data (n = 3077)

data research was Administrative data 1690
. Commercial or proprietary data
gettl ng access tO Other social media
commercial or Photographs, video, or audio
. Facebook
proprietary data, o
suggesting that more Sensor data

S dat

needs to be done to i
unlock data sets for Medical/scientific data
. . Media/press
social science research. Blbliographical data
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https://us.sagepub.com/sites/default/files/compsocsci.pdf
https://us.sagepub.com/sites/default/files/compsocsci.pdf
https://us.sagepub.com/sites/default/files/compsocsci.pdf
https://us.sagepub.com/sites/default/files/compsocsci.pdf

Challenge 2 - complexity of data

e In the social sciences, the new sources of
data ... derive overwhelmingly from mixed
sources (e.g., social media, unstructured
text, digital sensors, financial and
administrative transactions) not designed
to produce valid and reliable data for

Lukumaara

social scientific analysis (Lazer, Kennedy, okl odde

King, & Vespignani, 2014), resulting in the EEHNEYTRAEBEEREREEC YNy

challenge of harmonizing and EEEEEREE R R E R

extracting meaningful features " P o dFfd T g W rFresddd gl |
e ..., social scientific “big data” are

notable |ess for absolute size per se Aloituksen jalkeisia kommentteja @ Perakkaisten paivien kommentti-ID:n erotus

than for the complexity that renders
conventional methods inadequate (Doorn,
2014).


http://blogs.helsinki.fi/citizenmindscapes/files/2016/05/257383_HY_VALT_suomi24_muodonantoa_aineistolle.pdf

Challenge 3 - complex g o

e Our survey respondents listed Com puter Machine Mth ‘8
finding collaborators with the Science Learning Statistics
right skills and the amount of _—
time required to learn a new field %
as the bigggst_ barriers to entry. Unicorn

e Acharacteristic of researchers
doing big data research is that they i;] @

are more likely to collaborate with Traditional Traditional
other academics (79 percent of big Software Research
data researchers in our survey). -

Considering that a large number of
social science papers are single \ /
authored (about 40 percent, SUDJ¢
according to Thomson Reuters |
(King, 2013), this information is \
significant.
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mark, and +te remnawnte | trow | xall gett vp-on Cristofire Hanswm and Lwket. | pray
+gow send me it as hastely as +ge may, fore | xall leue my-selfe rythe bare; and | pray
+gow send me a letter how +ge woll +at he xall be demenyd. Wrytyn on Twsday after
Seynt Barthelmwe, &c. (\Christus vos obseruet.)) By Clef{ment Paston{]

W plasys ther as it shold be. but they can not fynd no thyng of it. Also that ye look
‘comfort for to cumfort me when I cum. | can not cum to youe as sone as | wuld: fior | m
dyr ne meuyd tne Kyng wythitornowt | can ot seye. Myn oncyll Wylliam thyrkys naye.

be bownd for to John Maryot. Item, | can ot redyly tell yow what ye be endettyd for

efull recomaunde me vnto you as he that can not  be mery nor nougnt schalbe tyll it be o
1 for syluyr; but mony can I non get. | can not  yet make my pesse wyth my lord of Norff
Yth my mody for your comyng hom, but | can not fynd by hyr +tat sne vyll depert wyth &
the most but, as for all nys dettors, | can ot pay hem tyl | can gadyr more mony, so
hurt by Parker. As for myn oncyll W., | can not mak hym to send yow the byl of syche s
maters set cler. What +tat he menytn | can not sey. As for all othyr maters in thys
one be takyn; what shall falle of hem | can not sey. The qwen +tat was and the Dwchesse
ng in his wrytyng that for asmych as he can not be payd of his tenauntes as he hat be b
hus myche on +gour owyn hed, and yT +ge can not spede of +te hatlase | pray +gow bye me
wyst in Ingelonde, for by my trowthe | kan not her by <P 141> pylgrymes +tat
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Are you happy (SPause)? (GiveTime)

. Well, T suppose T am
B Yeah (VblAck)

. To a point
W Yeah (VblAck)
B Mo affirm)

. You got friends in this- in the, *hostel*
1. Conversation lacks

conceptual richness, and B e

consequently we see little

engagement between CS and W Yeah

PWD manifested as white W No

space under the diagonal B o (VbiAk)
W No

No? (VblAck) But you go walking a lot, don't you

- (SPause)? (PWDKnowl) (GiveTime)
2. Use of PWDKnow! strategy /

gives rise to engagement
between CS and PWD.

W Mo (affirm)

Well T used to go walking a lot

\ I've seen you walking a lot here
(PWDKnowl)

W Around e place

1659 Oh yes you walk
'k wherever you have to
s

B Ycah (VblAck)
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http://www.iccss2015.eu/ICCSS2015_program_www.pdf

Santo Fortunato is Professor of Complex
Systems at the Department of Biomedical
Engineering and Computational Science
Lada Adamic is a computational social
scientist at Facebook and previously an
associate professor at the School of
Information and the Center for the
Study of Complex Systems
Albert-Laszl6 Barabasi directs the Center
for Complex Network Research, and
holds appointments in the Departments
of Physics and College of Computer
and Information Science

International Conference on Computational Social Science Luminaries

Nicholas Christakis MD, PhD, MPH, is a
social scientist and physician
Alessandro Vespignani is the Sternberg
Distinguished Professor of Physics,
Computer Science and Health Sciences
Dirk Helbing is Professor of Sociology,
in particular of Modeling and Simulation, at
the Department of Humanities, Social and
Political Sciences and member of the
Computer Science Department at ETH
Zurich. He earned a PhD in physics...



Indaco & Manovich, 2016: Urban Social Media Inequality: Definition,
Measurements, and Application



https://arxiv.org/abs/1607.01845
https://arxiv.org/abs/1607.01845

Indaco & Manovich, 2016: Urban Social Media Inequality: Definition,

Measurements, and Application

Social media inequality of visitors’
images in Manhattan (Gini = 0.669) is
larger than income inequality of most
unequal country in the world
(Seychelles where Gini = 0.658).

On the other hand, social media shared
by locals has a Gini coefficient similar
to countries that rank between 25 and
30 in the list of countries by income
inequality. These are countries like
Costa Rica (0.486), Mexico (0.481) and
Ecuador (0.466). (The World Bank,
2015).


https://arxiv.org/abs/1607.01845
https://arxiv.org/abs/1607.01845

Since Instagram did not support downloading
large volumes of historical data, we had to
download data and images continuously during
the period we wanted to cover. A single iMac
computer running 24/7 continuously was used
for downloading this data.



Solutions to data issues

Be at Facebook

Do local stuff

Make the peculiarity of the data an asset, a part of the research
Be opportunistic



Research process

Have data

Magic (?)

Something interesting shows up
Profit!

BN~



Research process

1. Have data

2. Magic (?)
3. Something interesting shows up
4. Profit!

“Any sufficiently advanced technology is indistinguishable from magic.”

- Arthur C. Clarke



Research process

1. Have data
2. Magic (?)
a. Hedge magic (spreadsheets, Excel graphs)
b. Common ritual magic (statistics: correlation, ANOVA, PCA)
m Relatively simple, commonly understood formulae you could mostly go through with pen
and paper if you wanted to
c. Higher ritual magic (SVM, LSA, LDA, SnE)
m  More complex, harder to follow formulae, impossible to work through manually
m  Well-grounded black box oracles (e.g. you feed a machine learning algorithm stuff, it
processes it based on complex but well-defined rules, out comes results)
d. Black magic (Deep learning)
m True black box oracles (you feed a neural network both an input and a desired output, it
derives mostly unintelligible black box rules that link the two)
e. Flashy magic (proper visualizations)

3. Something interesting shows up



Our digital humanities
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http://dhh16.hiit.fi/dhh16-tv-slides.pdf
http://dhh16.hiit.fi/dhh16-tv-slides.pdf
http://dhh16.hiit.fi/dhh16-tv-slides.pdf

Our digital humanities

At its best, such close collaboration Data host
offers benefits for everyone organization
involved

« scholars in the humanities are able
to tackle questions too labour-
intensive for manual study

« computer scientists encounter new
and challenging use cases for
the tools and algorithms they
develop

« data providers gain insight into
their own data

content
feedback

data

technical
feedback

Humanities
researcher

method
evaluation
method
support

CS
researcher



Don’t get carried away by fancy methods!

1. Your dataset must be applicable to the methods you choose. Complex
methods often make presuppositions about the data they apply to - if you
don’t understand these deeply, you'll end up with invalid results

2. Intypical DH research, 90% of your time will go to gathering and
understanding the data and transforming it into a form you can use - using
complex methods, another 90% of your time may go to altering them to fit
your data, and it’ll run out

3. Complex methods are often unnecessary for DH work. On the contrary, often
simpler methods are actually better.



KLK Newspaper Pipeline: from archives to a hypothetical researcher
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Our digital humanities

« Scholars in the humanities and computer sciences
collaborating, applying novel computer science to solve
humanities research questions



Digital humanities research process

2 D

[ o2 ,

) :

raw cleaning up data (80% of work) regearch

data - 5 articles
|a D l

under- ‘

D

standing
data

80% of your time for data cleanup, another
80% for algorithms, ...



Leverage collaboratlon open science workflows to
reduce |

raw cleaning up data (80% of work) | results > research
data y articles
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+ reproducibility



http://blogs.helsinki.fi/citizenmindscapes/files/2016/05/257383_HY_VALT_suomi24_muodonantoa_aineistolle.pdf
http://blogs.helsinki.fi/citizenmindscapes/files/2016/05/257383_HY_VALT_suomi24_muodonantoa_aineistolle.pdf
http://blogs.helsinki.fi/citizenmindscapes/files/2016/05/257383_HY_VALT_suomi24_muodonantoa_aineistolle.pdf
http://dhh16.hiit.fi/dhh16-tv-slides.pdf

Workflow/Tools

1. Data access
2. Possible preprocessing: R, Python, tm (for texts), OpenRefine, ...
3. Zero or more of:
o Statistics: R, stats, pandas, ...
o Topic modeling: Mallet, topicmodels, LDAvis, gensim, ... (for texts)
o Dimensionality reduction/clustering: stats, Isa, BayesLCA, pvclust, Weka, ...
(also for texts)
Social network analysis: igraph, sna, statnet, sonia, Gephi, ...
Simulation: NetlLoqgo, ...
Neural networks: som, TensorFlow™ ... (also for texts)
Association rule learning: arules, Weka, ...

O O O O O

FAGHS, Blotily, Leaflet, Gephi, CartiliE, <.or text visualization: Voyant Tools, ~— °%°°

” i

Textexture, Wordsift, ...



https://www.r-project.org/
https://www.python.org/
https://cran.r-project.org/web/packages/tm/index.html
http://openrefine.org/
https://www.r-project.org/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
http://pandas.pydata.org/
http://mallet.cs.umass.edu/
https://cran.r-project.org/web/packages/topicmodels/index.html
https://cran.r-project.org/web/packages/LDAvis/index.html
https://radimrehurek.com/gensim/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
https://cran.r-project.org/web/packages/lsa/index.html
https://cran.r-project.org/web/packages/BayesLCA/index.html
https://cran.r-project.org/web/packages/pvclust/index.html
http://www.cs.waikato.ac.nz/ml/weka/
http://igraph.org/
https://cran.r-project.org/web/packages/sna/index.html
https://cran.r-project.org/web/packages/statnet/index.html
http://web.stanford.edu/group/sonia/index.html
https://gephi.org
https://ccl.northwestern.edu/netlogo/
https://cran.r-project.org/web/packages/som/index.html
http://www.tensorflow.org/
https://cran.r-project.org/web/packages/arules/index.html
http://www.cs.waikato.ac.nz/ml/weka/
https://github.com/twitter/AnomalyDetection
https://public.tableau.com/s/
http://palladio.designhumanities.org/
http://raw.densitydesign.org/
http://nodegoat.net/
http://matplotlib.org/
http://ggplot2.org/
https://cran.r-project.org/web/packages/iplots/index.html
https://plot.ly/
http://leafletjs.com/
https://gephi.org
https://cartodb.com/
http://voyant-tools.org/
http://textexture.com/index.php
http://www.wordsift.com/

Voyant tools

BB Corpus Terms ? ? € Links  EH Collocates ?
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Ilule LOVE AND FREINDSHIP AND OTHER EARLY WORKS 00
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N away A Collection of Juvenile Writings gY
v makeq ” = By Jane Austen §
‘ [==H] Transcriber's Note: A few very small changes have been made to this E
= version: ltalics have been converted to capitals. The British ‘pound’ 2
gt symbol has been converted to 'L'; but in general the author's erratic 2
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http://voyant-tools.org/?corpus=6ea69e1517962a64995a2c23a6cfc0a7
http://voyant-tools.org/?corpus=6ea69e1517962a64995a2c23a6cfc0a7

Types of data

e Structured (databases) vs unstructured (text, image, video, audio)
e Clean vs messy
e Biased? <-incomplete, messy, badly sampled



Topic Modeling: LDA - Assumptions

® A document collection contains N topics

® A single document can consist of multiple topics (e.g. 30% war and 70%
cooking)

® The N topics are in essence probability distributions over words (e.g. there is
a 1,5% chance that a random word from a ‘war’ topic is ‘attack’, while only a
0,00001% chance in a ‘cooking’ topic)

® There are two distributions that give the prior probabilities of:

d. the probability of topic mixes in documents (e.g. how likely is it that a single document talks
about all the topics vs. only a few) , and

b. the probability mix of words in a topic (e.g. do individual topics mainly contain many words or
just a few)



Topic Modeling: LDA - Role of (symmetric) priors
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Topic Modeling: LDA - How it works

® Take all words and documents and randomly assign them to topics (based on
the prior distributions)

® Calculate the combined probability of this combination producing the
documents we have

® Update the topic assignments as well as the prior distributions so the
probability increases

® Repeat many many times until we're happy



L DA in Practice

corpus <-

VCorpus (DirSource ("/srv/data/varieng/ceec—-subcorpora/scot-17
00-1719/™))

corpus <- tm map (corpus,content transformer (tolower))

corpus <- tm map (corpus, removeNumbers)

corpus <- tm map (corpus, removePunctuation)

corpus <- tm map (corpus, removeWords, stopwords ("SMART") )
corpus <- tm map (corpus, stripWhitespace)

numtopics <- 20

lda <- LDA (DocumentTermMatrix (corpus), numtopics)


https://docs.google.com/document/d/13I7svLlqrg7i0iisw2E_v48Gae5tnXVFWxmeHyGAKFU/edit#heading=h.jkxh3kgvpjxh

Topic Modeling: LDA - Role of priors
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Topic Modeling: LDA - Effect of priors

® Traditional LDA supposed uniform priors

® Turns out non-uniform priors make sense for how topics appear in
documents, but not for how words appear in topics

— as-LDA, which also turns out to need less pre-filtering of e.g. stopwords,
numbers, because these can be sequestered into a common topic without
constraining how other topics appear


http://people.cs.umass.edu/~wallach/publications/wallach09rethinking.pdf
http://rare-technologies.com/python-lda-in-gensim-christmas-edition/

Figure 6 Primary discipline of respondents who have been involved in big data research (n = 9195)
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Figure 15 Challenges facing big data researchers (n = 2273)
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Figure 19 Problems encountered by amount of research using big data (n = 2266)

I
Developing effective research designs ? |

Finding collaborators with the right skills

and knowledge ?

Learning new analytic methods for myself

Learning new software for myself
Getting ethical approval for my research H

Geting funding for. fy tesearcn W

Getting access to commercial or

Establishing a successful career in an
interdisciplinary field

proprietary data for my research F

Choosing a suitable journal in which to

publish my research | E—————

0%

10% 20%

30%

All or most

@® Some or a little

40%  50%

60%




INFO HOME PROJECTS TEAM JOIN US

F BLACKFRIARS BRIDGE
Q  PRIMARY
(o}
. 57.9%
EMISSIONS
Q
(<}

SURPRISE

cardl EMISSIONS @ NATURE ® FOOD @ ANIMALS @ WASTE
Leafiet | © OpenStreetMap, © Mapbox, © CARTO


http://goodcitylife.org/smellymaps/index.html

