1 of 37

Fuzzy Logic: Membership Functions

Sachin Saxena

Assistant Professor,

CSE DEPARTMENT,

ABES, Engineering College, Ghaziabad, Uttar Pradesh

sachin.saxena@abes.ac.in

+91-8909603708

Access this PPT at: https://sachinplacement.blogspot.com

ABES Engineering College, Ghaziabad

2 of 37

Overview

  • Outline to the left in green
  • Current topic in yellow

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Variables
  • Fuzzy Logic Operators
  • Fuzzy Control
  • Case Study

Fuzzy Logic

2

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

3 of 37

References

  • L. Zadah, “Fuzzy sets as a basis of possibility” Fuzzy Sets Systems, Vol. 1, pp3-28, 1978.
  • T. J. Ross, “Fuzzy Logic with Engineering Applications”, McGraw-Hill, 1995.
  • K. M. Passino, S. Yurkovich, "Fuzzy Control" Addison Wesley, 1998.

Fuzzy Logic

3

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

4 of 37

L. Zadah

Fuzzy Logic

4

5 of 37

Introduction

  • Fuzzy logic:
    • A way to represent variation or imprecision in logic
    • A way to make use of natural language in logic
    • Approximate reasoning
  • Humans say things like "If it is sunny and warm today, I will drive fast"
  • Linguistic variables:
    • Temp: {freezing, cool, warm, hot}
    • Cloud Cover: {overcast, partly cloudy, sunny}
    • Speed: {slow, fast}

Fuzzy Logic

5

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

6 of 37

Crisp (Traditional) Variables

  • Crisp variables represent precise quantities:
    • x = 3.1415296
    • A ∈{0,1}
  • A proposition is either True or False
    • A ∧ B C
  • King(Richard) Greedy(Richard) ⇒ Evil(Richard)
  • Richard is either greedy or he isn't:
    • Greedy(Richard) ∈{0,1}

Fuzzy Logic

6

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

7 of 37

Fuzzy Sets

  • What if Richard is only somewhat greedy?
  • Fuzzy Sets can represent the degree to which a quality is possessed.
  • Fuzzy Sets (Simple Fuzzy Variables) have values in the range of [0,1]
  • Greedy(Richard) = 0.7
  • Question: How evil is Richard?

Fuzzy Logic

7

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

8 of 37

Fuzzy Linguistic Variables

Fuzzy Logic

8

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

9 of 37

Fuzzy Linguistic Variables

  • Fuzzy Linguistic Variables are used to represent qualities spanning a particular spectrum
  • Temp: {Freezing, Cool, Warm, Hot}
  • Membership Function
  • Question: What is the temperature?
  • Answer: It is warm.
  • Question: How warm is it?

Fuzzy Logic

9

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

10 of 37

Membership Functions

  • Temp: {Freezing, Cool, Warm, Hot}
  • Degree of Truth or "Membership"

Fuzzy Logic

10

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

11 of 37

Membership Functions

  • How cool is 36 F° ?

Fuzzy Logic

11

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

12 of 37

Membership Functions

  • How cool is 36 F° ?
  • It is 30% Cool and 70% Freezing

Fuzzy Logic

12

0.7

0.3

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

13 of 37

Fuzzy Logic

  • How do we use fuzzy membership functions in predicate logic?
  • Fuzzy logic Connectives:
    • Fuzzy Conjunction, ∧
    • Fuzzy Disjunction, ∨
  • Operate on degrees of membership in fuzzy sets

Fuzzy Logic

13

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

14 of 37

Fuzzy Disjunction

  • A∨B max(A, B)
  • A∨B = C "Quality C is the disjunction of Quality A and B"

Fuzzy Logic

14

  • (A∨B = C) ⇒ (C = 0.75)
  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

15 of 37

Fuzzy Conjunction

  • A∧B min(A, B)
  • A∧B = C "Quality C is the conjunction of Quality A and B"

Fuzzy Logic

15

  • (A∧B = C) ⇒ (C = 0.375)
  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

16 of 37

Example: Fuzzy Conjunction

Calculate A∧B given that A is .4 and B is 20

Fuzzy Logic

16

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

17 of 37

Example: Fuzzy Conjunction

Calculate A∧B given that A is .4 and B is 20

Fuzzy Logic

17

    • Determine degrees of membership:

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

18 of 37

Example: Fuzzy Conjunction

Calculate A∧B given that A is .4 and B is 20

Fuzzy Logic

18

    • Determine degrees of membership:
      • A = 0.7

0.7

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

19 of 37

Example: Fuzzy Conjunction

Calculate A∧B given that A is .4 and B is 20

Fuzzy Logic

19

    • Determine degrees of membership:
      • A = 0.7 B = 0.9

0.7

0.9

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

20 of 37

Example: Fuzzy Conjunction

Calculate A∧B given that A is .4 and B is 20

Fuzzy Logic

20

    • Determine degrees of membership:
      • A = 0.7 B = 0.9
    • Apply Fuzzy AND
      • A∧B = min(A, B) = 0.7

0.7

0.9

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

21 of 37

Fuzzy Control

  • Fuzzy Control combines the use of fuzzy linguistic variables with fuzzy logic
  • Example: Speed Control
  • How fast am I going to drive today?
  • It depends on the weather.
  • Disjunction of Conjunctions

Fuzzy Logic

21

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

22 of 37

Inputs: Temperature

  • Temp: {Freezing, Cool, Warm, Hot}

Fuzzy Logic

22

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

23 of 37

Inputs: Temperature, Cloud Cover

  • Temp: {Freezing, Cool, Warm, Hot}

  • Cover: {Sunny, Partly, Overcast}

Fuzzy Logic

23

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

24 of 37

Output: Speed

  • Speed: {Slow, Fast}

Fuzzy Logic

24

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

25 of 37

Rules

  • If it's Sunny and Warm, drive Fast

Sunny(Cover)∧Warm(Temp)⇒ Fast(Speed)

  • If it's Cloudy and Cool, drive Slow

Cloudy(Cover)∧Cool(Temp)⇒ Slow(Speed)

  • Driving Speed is the combination of output of these rules...

Fuzzy Logic

25

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

26 of 37

Example Speed Calculation

  • How fast will I go if it is
    • 65 F°
    • 25 % Cloud Cover ?

Fuzzy Logic

26

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

27 of 37

Fuzzification:�Calculate Input Membership Levels

  • 65 F° ⇒ Cool = 0.4, Warm= 0.7

Fuzzy Logic

27

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

28 of 37

Membership Functions

Fuzzy Logic

28

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary

29 of 37

Fuzzy Logic

29

30 of 37

Fuzzy Logic

30

31 of 37

Fuzzy Logic

31

32 of 37

Fuzzy Logic

32

33 of 37

Fuzzy Logic

33

34 of 37

Fuzzy Logic

34

35 of 37

Fuzzy Logic

35

36 of 37

Ref: https://researchhubs.com/post/engineering/fuzzy-system/fuzzy-membership-function.html

36

37 of 37

Summary

  • Fuzzy Logic provides way to calculate with imprecision and vagueness
  • Fuzzy Logic can be used to represent some kinds of human expertise
  • Fuzzy Membership Sets
  • Fuzzy Linguistic Variables
  • Fuzzy AND and OR
  • Fuzzy Control

Fuzzy Logic

37

  • References
  • Introduction
  • Crisp Variables
  • Fuzzy Sets
  • Linguistic Variables
  • Membership Functions
  • Fuzzy Logic
    • Fuzzy OR
    • Fuzzy AND
    • Example
  • Fuzzy Control
    • Variables
    • Rules
    • Fuzzification
    • Defuzzification
  • Summary