Decorators, Stage 2 update:
Statically Analyzable

Daniel Ehrenberg

lgalia, in partnership with Bloomberg
March 2019 TC39

Popularity
e The JS ecosystem makes heavy use of

o TypeScript "experimental" decorators
o Babel "legacy" decorators

i.e. roughly, the proposal as of 2014

e 2015: Proposal switched to descriptors

many developers didn't

Excitement

e IJS developers are really excited about decorators!

e Features people make use of or ask for:
o Initially proposed features
m ad-hoc implementation limitations
o Features of the Stage 2 proposal
m Interaction with private and fields
m Scheduling callbacks on construction
o Features not yet proposed (mixins, functions, let)

Some goals

e Decorators should be fast in implementations:
o Transpilers
o JS engines

e Decorators should be easy to use:
o Using someone else's decorators
o Writing your own

History of decorator proposals

In 2014/2015: TypeScript "experimental’/Babel "legacy”

TypeSCl’lpt Quick Start Documentation Download Connect Playground

TypeScript 3.3 is now available. Download our latest version today! %‘,
%

@ This site uses cookies for analytics, personalized content and ads. By continuing to browse this site, you agree to this use. Learn more

Documentation

Tutorials v
What's New v
Handbook v
Declaration Files v

Project Configuration v

Decorators

Introduction

With the introduction of Classes in TypeScript and ES6, there now exist certain scenarios that require additional features to
support annotating or modifying classes and class members. Decorators provide a way to add both annotations and a meta-
programming syntax for class declarations and members. Decorators are a stage 2 proposal for JavaScript and are available

as an experimental feature of TypeScript.
NOTE Decorators are an experimental feature that may change in future releases.

To enable experimental support for decorators, you must enable the experimentalDecorators compiler option either

on the command line or in your tsconfig.json:

Command Line:

tsc --target ES5 --experimentalDecorators

class Greeter {
greeting: string;
constructor(message: string) {
this.greeting = message;

}
@enumerable(false)
greet() {
return "Hello, " + this.greeting;
}

We can define the @enumerable decorator using the following function declaration:

function enumerable(value: boolean) {
return function (target: any, propertyKey: string, descriptor: PropertyDescript

or) {

descriptor.enumerable = value;

}i

2016: Descriptor-based decorators

interface MemberDesciptor { interface ClassDesciptor {
kind: "property" kind: "class",
key: string, constructor: Function,
isStatic: boolean, heritage: Object | null,
descriptor: PropertyDescriptor, elements: MemberDescriptor|[]
extras?: MemberDescriptor[] }

finisher?: (klass): void;

2017-2019: Descriptor-based proposal grows and

parameter
descriptor

kind:

elements:

key:

placement:

initialize:

method:

get:

set:
writable:
configurable:

enumerable:

@decorator

class

"class”

Array of member

descriptors 1

@decorator
method()

"method"

method name

"prototype" ||
"static"

method function

true
true

false

@decorator
field

"field"

property name

"own" || "static"

Function used to set the

initial value of the field
2

true
true

false

@decorator
get field()
set field()

"accessor" 4

property name

"prototype" ||
"static"

getter function

setter function

5

true

false

descriptor
(optional)

{

kind:

elements:

key:

placement :

extras:

initialize:

method:

get:

set:
writable:
configurable:

enumerable:

start:

finish:

replace:

class

“class”

Array of
member
descriptors ®

evolves

method() field getter/setter
“method” “field" “accessor”
method ’

8 field name & field name 8

name
“prototype” “prototype” || “prototype” ||
|| "static® || | “static® || "static” ||
“own" “own" “own"
Array of Array of Array of

descriptors 7

method
function

true || false
true || false

false || true

descriptors 7 descriptors 7

Function used

to set the 9

initial value of

the field

2 =)

- getter

- setter
9

true || false -
true || false true || false

false || true false || true

Hooks

*hook® 10

“"prototype” ||
“static" ||

own

Function for
effect 1

Function for
effect 1

Function for
replacement
10

Language-level issues with decorators

Complex to write decorators

e Need to understand Object.defineProperty deeply
o Even with original decorators
o Ecosystem abstraction layers

e With Stage 2 proposal, expanded descriptor language

Difficult to extend over time

e Past discussion about "elements"

e Passing new fields back from decorators

e Mixin feature request

Ember's experience
and issues with the
original decorators
proposal

Why are descriptor-based decorators slow?

Transpiler implementations

e Lots of code generated
e Elements array shows up big
e Traverse many dynamic data structures
o Including in the constructor
o Even without class elements
e It takes time to allocate class declaration
o Lots of descriptors to create and parse
e Unclear how to generate good code

Native implementations

Fundamentally, similar overhead!

Several things observable which weren't before:
o E.g., Initializer thunks

Class declaration may run multiple times and have
different shpaes different times

Fancy optimizations harder to do in 1interpreter (but the
JIT may do them)

Best case: Class structure available when generating
bytecode

Thanks for the detailed analysis, Sathya Gunasekaran!

It's nice if it's easier
to see what's going on

Decorators tend to
have a fixed shape

Built-in decorators and composition

The idea

« Basic building blocks: Built-in decorators
« Compose to make JavaScript-defined decorators

e (@decorators are separate, static, lexically scoped

Built-in decorators

@wrap
@register
@expose
@initialize

e More in follow-on proposals

Decorators defined in JavaScript

e Compose built-in decorators
e Pass computed arguments to them

decorator @foo { @bar @baz @bing }

@register

@register

class C { class C {
@register(f) method() { } method() { }

} }
f(C.prototype, "method");

@register

@register(f) class C {
class C { } method() { }

}
f(C);

@defineklement

import { @defineElement } from
"./defineElement.mjs";

@defineElement('my-class')
class MyClass extends HTMLElement {

/* o000 %/

// defineElement.mjs

export decorator @defineElement(
name, options) {
@register(klass =>
customElements.define(
name, klass, options))

@wrap

class C { class C {
@wrap(f) method() { } method() { }

} }
C.prototype.method =

f(C.prototype.method);

@wrap

@wrap(f) class C { }
class C { } C = f(C);

@logged

import { @logged } from "./logged.mjs"; // logged.mjs
class C { export decorator @logged {
@logged @wrap(f => {
method(arg) { const name = f.name;
this.#x = arg; function wrapped(...args) {
} console.log(starting ${name}
@logged with arguments ${args.join(", ")});
set #x(value) { } f.call(this, ...args);
} console.log(ending ${name});
new C().method(1); }
// starting method with arguments 1 wrapped.name = name;
// starting set #x with arguments 1 return wrapped;
// ending set #x 1)

// ending method }

@initialize

@initialize

class C { class C {
@initialize(f) a = b; constructor() {
} f(this, "a", b);
}

}

@initialize

@initialize(f) class C {
class C { } constructor() {
f(this);
}

}

@bound

import { @bound } from "./bound.mjs"; // bound.mjs
export decorator @bound {
class Foo { @initialize((instance, name) =>
x = 1; instance[name] =
@bound method() { instance[name].bind(instance))
console.log(this.x); }
}

queueMethod() {
setTimeout(this.method, 1000);

}
¥

new Foo().queueMethod();
// logs 1, not undefined

@expose

@expose

class C {
@expose(f) #x;
}

class C {
@register(proto =>
f(proto,
"Hx",
instance => instance.#x,
(instance, value) =>
instance.#x = value))
#X;
}

@ShOW export class FriendKey {
#map = new Map();
expose(name, get, set) {
this.#map.set(name, { get, set });

import { FriendKey, @show } from }
"./friend.mjs"; get(obj, name) {
return this.#map.get(name).get(obj);

let key = new FriendKey; }
export class Box { set(obj, name, value) {

@show(key) #contents; return this.#map.get(name)
} .set(obj, value);

}

export function setBox(box, contents) { }

return key.set(box, "#x", contents);
} export decorator @show(key) {
export function getBox(box) { @expose((target, name, get, set) =>

return key.get(box, "#x"); key.expose(name, get, set))

¥ }

Common features of decorators

Syntax

Uses DecoratorlList syntax before an existing construct
Doesn't change the syntax of what's decorated
No early errors, but rather runtime errors

Semantics/phasing

e Decorator arguments are evaluated at runtime
o In classes: Interspersed with computed property names

e In spec-land, they run at runtime
o But 1it's always apparent which built-in decorators are
used

e When code is executing multiple times, different
arguments, but the same built-in decorators

Potential future built-in decorators

Decorators for other syntactic forms

Functions

Parameters

Variable declarations
Blocks

Labels

Numeric literals
Object literals
Object properties
(not expressions)

Built-in support for common scenarios

@bound
@tracked
@reader
@set

Error checking

@assertClass
@assertMethod
@assertField
@assertPrivate
etc

Property descriptor/placement change

@own

@prototype
@static
@enumerable
@nonenumerable
@writable
@nonwritable
@configurable
@nonconfigurable

Statically change the structure of the class

Adding a private field

Converting a field to an accessor
Adding a mixin (even to a base class)
etc.

e May use some kind of descriptor (as input, not output)
e Or, may use some yet-to-be-designed mini-language
o Could be a separate declaration form

Implementation notes:

Some complexity, but more optimizable

Could implement this directly

e Can be executed dynamically
o Similar to the previous proposal
o This 1s how the spec will be written

e But, to take advantage of the guarantees and optimize...

JavaScript
compilation becomes
non-local

Transpilers: ~ .decorators.json

e Describes which built-in decorators a composed decorator
breaks down into

e Referenced when compiling a file which uses the
decorators

e Separate runtime representation used for arguments

e Different from how tooling works now, but seems doable

Custom decorators in tooling

e Decorators could be a good basis for more general macros
e To start: Follow lead of babel-plugin-macros and let
tools define decorators which are tree transforms
o Then, they can be composed!
o So, prototype proposed built-in decorators

https://github.com/kentcdodds/babel-plugin-macros

Native JS implementations:
Bytecode based on dependencies

e (Classes with decorators are lazy-parsed if their
decorator has not yet been parsed

e Cached bytecode 1is invalidated when imported decorators
change

e Generally positive feedback from browsers
e Different from how engines work now, but a much better
starting point for optimization than the last proposal

Next steps

Recommendations for authors of decorators today

The original decorators proposal 1is broadly supported
The newer January 2019 "Stage 2" proposal is not

Just keep using "legacy"/"experimental" decorators
Tools may need to maintain support for set-based fields
until it's possible to transition to Stage 3 decorators

e Goal of this proposal: For users (not authors) of
decorators, upgrading to standard should be a codemod

Prototyping this proposal

e Write specification

e Implement these new decorators in Babel
o Including some "post-MVP" decorators

e Try out the new decorators

e Collect feedback

e Propose for Stage 3 after some months of stability+use

