
Decorators, Stage 2 update:
Statically Analyzable

Daniel Ehrenberg
Igalia, in partnership with Bloomberg

March 2019 TC39

Popularity

● The JS ecosystem makes heavy use of
○ TypeScript "experimental" decorators
○ Babel "legacy" decorators

i.e. roughly, the proposal as of 2014

● 2015: Proposal switched to descriptors

many developers didn't

Excitement

● JS developers are really excited about decorators!

● Features people make use of or ask for:
○ Initially proposed features

■ ad-hoc implementation limitations
○ Features of the Stage 2 proposal

■ Interaction with private and fields
■ Scheduling callbacks on construction

○ Features not yet proposed (mixins, functions, let)

Some goals

● Decorators should be fast in implementations:
○ Transpilers
○ JS engines

● Decorators should be easy to use:
○ Using someone else's decorators
○ Writing your own

History of decorator proposals

In 2014/2015: TypeScript "experimental"/Babel "legacy"

How decorators originally worked

2016: Descriptor-based decorators

interface MemberDesciptor {
 kind: "property"
 key: string,
 isStatic: boolean,
 descriptor: PropertyDescriptor,
 extras?: MemberDescriptor[]
 finisher?: (klass): void;
}

interface ClassDesciptor {
 kind: "class",
 constructor: Function,
 heritage: Object | null,
 elements: MemberDescriptor[]
}

2017-2019: Descriptor-based proposal grows and evolves

Language-level issues with decorators

Complex to write decorators

● Need to understand Object.defineProperty deeply
○ Even with original decorators
○ Ecosystem abstraction layers

● With Stage 2 proposal, expanded descriptor language

Difficult to extend over time

● Past discussion about "elements"

● Passing new fields back from decorators

● Mixin feature request

Ember's experience
and issues with the
original decorators
proposal

Why are descriptor-based decorators slow?

Transpiler implementations

● Lots of code generated
● Elements array shows up big
● Traverse many dynamic data structures

○ Including in the constructor
○ Even without class elements

● It takes time to allocate class declaration
○ Lots of descriptors to create and parse

● Unclear how to generate good code

Native implementations

● Fundamentally, similar overhead!
● Several things observable which weren't before:

○ E.g., Initializer thunks

● Class declaration may run multiple times and have
different shpaes different times

● Fancy optimizations harder to do in interpreter (but the
JIT may do them)

● Best case: Class structure available when generating
bytecode

● Thanks for the detailed analysis, Sathya Gunasekaran!

It's nice if it's easier
to see what's going on

Decorators tend to
have a fixed shape

Built-in decorators and composition

The idea

● Basic building blocks: Built-in decorators

● Compose to make JavaScript-defined decorators

● @decorators are separate, static, lexically scoped

Built-in decorators

● @wrap
● @register
● @expose
● @initialize

● More in follow-on proposals

Decorators defined in JavaScript

● Compose built-in decorators
● Pass computed arguments to them

decorator @foo { @bar @baz @bing }

@register

@register

class C {

 @register(f) method() { }

}

class C {

 method() { }

}

f(C.prototype, "method");

@register

@register(f)

class C { }

class C {

 method() { }

}

f(C);

@defineElement

import { @defineElement } from

 "./defineElement.mjs";

@defineElement('my-class')

class MyClass extends HTMLElement {

 /* ... */

}

// defineElement.mjs

export decorator @defineElement(

 name, options) {

 @register(klass =>

 customElements.define(

 name, klass, options))

}

@wrap

@wrap

class C {

 @wrap(f) method() { }

}

class C {

 method() { }

}

C.prototype.method =

 f(C.prototype.method);

@wrap

@wrap(f)

class C { }

class C { }

C = f(C);

@logged

import { @logged } from "./logged.mjs";

class C {

 @logged

 method(arg) {

 this.#x = arg;

 }

 @logged

 set #x(value) { }

}

new C().method(1);

// starting method with arguments 1

// starting set #x with arguments 1

// ending set #x

// ending method

// logged.mjs

export decorator @logged {

 @wrap(f => {

 const name = f.name;

 function wrapped(...args) {

 console.log(`starting ${name}

with arguments ${args.join(", ")}`);

 f.call(this, ...args);

 console.log(`ending ${name}`);

 }

 wrapped.name = name;

 return wrapped;

 })

}

@initialize

@initialize

class C {

 @initialize(f) a = b;

}

class C { }

C = f(C);

class C {

 constructor() {

 f(this, "a", b);

 }

}

@initialize

@initialize(f)

class C { }

class C {

 constructor() {

 f(this);

 }

}

@bound

import { @bound } from "./bound.mjs";

class Foo {

 x = 1;

 @bound method() {

 console.log(this.x);

 }

 queueMethod() {

 setTimeout(this.method, 1000);

 }

}

new Foo().queueMethod();

// logs 1, not undefined

// bound.mjs

export decorator @bound {

 @initialize((instance, name) =>

 instance[name] =

 instance[name].bind(instance))

}

@expose

@expose

class C {

 @expose(f) #x;

}

class C {

 @register(proto =>

 f(proto,

 "#x",

 instance => instance.#x,

 (instance, value) =>

 instance.#x = value))

 #x;

}

@show

import { FriendKey, @show } from

 "./friend.mjs";

let key = new FriendKey;

export class Box {

 @show(key) #contents;

}

export function setBox(box, contents) {

 return key.set(box, "#x", contents);

}

export function getBox(box) {

 return key.get(box, "#x");

}

export class FriendKey {

 #map = new Map();

 expose(name, get, set) {

 this.#map.set(name, { get, set });

 }

 get(obj, name) {

 return this.#map.get(name).get(obj);

 }

 set(obj, name, value) {

 return this.#map.get(name)

 .set(obj, value);

 }

}

export decorator @show(key) {

 @expose((target, name, get, set) =>

 key.expose(name, get, set))

}

Common features of decorators

Syntax

● Uses DecoratorList syntax before an existing construct
● Doesn't change the syntax of what's decorated
● No early errors, but rather runtime errors

Semantics/phasing

● Decorator arguments are evaluated at runtime
○ In classes: Interspersed with computed property names

● In spec-land, they run at runtime
○ But it's always apparent which built-in decorators are

used

● When code is executing multiple times, different
arguments, but the same built-in decorators

Potential future built-in decorators

Decorators for other syntactic forms

● Functions
● Parameters
● Variable declarations
● Blocks
● Labels
● Numeric literals
● Object literals
● Object properties
● (not expressions)

Built-in support for common scenarios

● @bound
● @tracked
● @reader
● @set

Error checking

● @assertClass
● @assertMethod
● @assertField
● @assertPrivate
● etc

Property descriptor/placement change

● @own
● @prototype
● @static
● @enumerable
● @nonenumerable
● @writable
● @nonwritable
● @configurable
● @nonconfigurable

Statically change the structure of the class

● Adding a private field
● Converting a field to an accessor
● Adding a mixin (even to a base class)
● etc.

● May use some kind of descriptor (as input, not output)
● Or, may use some yet-to-be-designed mini-language

○ Could be a separate declaration form

Implementation notes:
Some complexity, but more optimizable

Could implement this directly

● Can be executed dynamically
○ Similar to the previous proposal
○ This is how the spec will be written

● But, to take advantage of the guarantees and optimize...

JavaScript
compilation becomes
non-local

Transpilers: .decorators.json

● Describes which built-in decorators a composed decorator
breaks down into

● Referenced when compiling a file which uses the
decorators

● Separate runtime representation used for arguments

● Different from how tooling works now, but seems doable

Custom decorators in tooling

● Decorators could be a good basis for more general macros
● To start: Follow lead of babel-plugin-macros and let

tools define decorators which are tree transforms
○ Then, they can be composed!
○ So, prototype proposed built-in decorators

https://github.com/kentcdodds/babel-plugin-macros

Native JS implementations:
Bytecode based on dependencies

● Classes with decorators are lazy-parsed if their
decorator has not yet been parsed

● Cached bytecode is invalidated when imported decorators
change

● Generally positive feedback from browsers
● Different from how engines work now, but a much better

starting point for optimization than the last proposal

Next steps

Recommendations for authors of decorators today

● The original decorators proposal is broadly supported
● The newer January 2019 "Stage 2" proposal is not
● Just keep using "legacy"/"experimental" decorators
● Tools may need to maintain support for set-based fields

until it's possible to transition to Stage 3 decorators

● Goal of this proposal: For users (not authors) of
decorators, upgrading to standard should be a codemod

Prototyping this proposal

● Write specification
● Implement these new decorators in Babel

○ Including some "post-MVP" decorators
● Try out the new decorators
● Collect feedback

● Propose for Stage 3 after some months of stability+use

