dm-writeboost
Internal

Akira Hayakawa (@akiradeveloper)



The scope of this slides

e Help those who wants to deeply understand
dm-writeboost.

e Compliments doc/dm-writeboost-readme.txt

e Includes figures that helps you read the
code.



Overview of dm-writeboost

e Block-level log-structured caching driver for Linux, influenced by
Disk Caching Disk (DCD).
e Features

O

Durable: Each log contains data and metadata atomically. So
never lose data on any failure.

Long lifetime of SSD cache device: We only need to write to
SSD once per 127 writes.

Fast: Compared to dm-cache and bcache, random write is
efficient.

Portable: Support kernel 3.10 to the latest.



What is DCD?

A block-level log-structured caching influenced by Splite LFS

Interface

¥

‘ Cache Disk

Data Disk

http://lwww.ele.uri.edu/research/hpcl/DCD/DCD.html



http://www.ele.uri.edu/research/hpcl/DCD/DCD.html

Architecture

queued whan it is full Foreground

] Background

Writeback

modulator

Flush Writeback
daemon daemon

flushed to spedjfied segment sorted Ry address

“So /| SSD (cache_dev) HDD (backing_dev)




Producer-Consumer Model

- =S

>
Flush Writeback
daemon

daemon

RAM buffers and segments on SSD are ring buffer,
which is a good data structure for producer-consumer

model.



btt Generated Block Accesses

‘dm_btt_254,3 w.dat’ +

olole]
DO

cks p

~~~N Booocom
o>

Sowpiow
ONBOM

250. 5
25 25T55% lock Number

Time (secsz)sz'

Random writes to a caching device

Visualize the I/O trace

btt Generated Block Accesses

‘sdb_btt_8,16_w.dat’

1035
1030
cks pe0o2® |, . 44+t
1020 t
1015 P e

A~ —

1010 } -

A

460 +06
461 461 75 = g +08! e}
Time (secs)>>>463 45357 0800

Writes to the cache device is sequentia
erronous but shows sequentiality)

The visualization is helped

+

350406
306
+06

clk Number

| (little bit

by Etsukata



Flushing the Logs
From RAM buffer to SSD



Foreground Processing
Storing writes in RAM buffer

't :

Write data are once stored into RAM
buffer in order of acceptance

RAM buffer

Logical
Address

4

RAM buffer is queued as a flush job when it is full



cache_dev

Background Processing

Flush Job | Flush Fob
id k+3 id k+4
! :
RAM buffer RAM buffer
index=7 index=8
Flush
aemon
Y
seg seg seg seg seg
id k id k+1 id k+2 id k+3 id k+4




Log format

with alignment care for crash durability

segment
header

Data[0]

Data[1]

Data[2]

Data[3]

A

id (8byte)

checksum (4byte)

length (1byte)

padding (499byte)

metablock[0]

metablock([1]

sector-aligned for

atomicity

—

sector (8byte)

dirty bits (1byte)

padding (7byte)

—_—

2"k-aligned so that no
metablock straddles two
sectors



Writeback
From SSD to HDD



Autonomous writeback switching

r¢fad

turn on/off

Writeback
Daemon

/_?teback
Modulator

SSD

enable writeback modulator=1

sort then write

/O stat

HDD




Batching and Sorting

e Batching: Writeback daemon fetches multiple
segments (tuned by nr_max_batched_writeback)

e Sorting: And then sorts all the cache blocks in the
segments by the destination address, using rbtree. This
can make use of sequential write performance of
backing rotational disk.

o We should not trust I/O scheduler



Read caching



Requirements

e Read caching works in log-structured manner as well as
write caching. They should co-exists in the same cache
device. => share the internal write path

e Don’t cache read data larger than user-defined
threshold.

o Problem: Since we split the in-coming bio to 4KB
chunks, we lost the information of how large the
original bio is. => read cache cells




The basic concept:
Write the read data after completion

Process Write Process Read

v |

Read from HDD Read from SSD
By sharing the internal write Read
path, both write caching and Completion
read caching can co-exist in the P

same log. In completion, bio has read data.

Internal write path




Thresholding

read cache cells

addr

data

Read completion

¢

Read data are once buffered in read

cache cells so we can detect the

1 10 12 |9

¢

Internal write path

sequentiality. In this figure, we can
detect sequences of length 7 (from O
to 6) and a separate length 1 (only
9), respectively.

Sequentiality is detected to not
cache data sequence which is too
sequential.



