
dm-writeboost
internal

Akira Hayakawa (@akiradeveloper)



The scope of this slides

● Help those who wants to deeply understand 
dm-writeboost.

● Compliments doc/dm-writeboost-readme.txt
● Includes figures that helps you read the 

code.



Overview of dm-writeboost
● Block-level log-structured caching driver for Linux, influenced by 

Disk Caching Disk (DCD).
● Features

○ Durable: Each log contains data and metadata atomically. So 
never lose data on any failure.

○ Long lifetime of SSD cache device: We only need to write to 
SSD once per 127 writes.

○ Fast: Compared to dm-cache and bcache, random write is 
efficient.

○ Portable: Support kernel 3.10 to the latest.



What is DCD?
A block-level log-structured caching influenced by Splite LFS

http://www.ele.uri.edu/research/hpcl/DCD/DCD.html

http://www.ele.uri.edu/research/hpcl/DCD/DCD.html


Architecture

Flush
daemon

Writeback
daemon

Writeback
modulator

RAM 
buffer

SSD (cache_dev) HDD (backing_dev)

queued when it is full

flushed to specified segment

on/off

Foreground

Background

sorted by address



Producer-Consumer Model

Flush
daemon

Writeback
daemon

RAM buffers and segments on SSD are ring buffer, 
which is a good data structure for producer-consumer 
model.



Visualize the I/O trace

Random writes to a caching device
Writes to the cache device is sequential (little bit 
erronous but shows sequentiality)

The visualization is helped by Etsukata



Flushing the Logs
From RAM buffer to SSD



Foreground Processing
Storing writes in RAM buffer

Logical 
Address

RAM buffer

RAM buffer is queued as a flush job when it is full

Write data are once stored into RAM 
buffer in order of acceptance



Background Processing

Flush Job
id k+3

Flush Fob
id k+4

seg
id k

seg
id k+1

seg
id k+2

seg
id k+3

seg
id k+4

RAM buffer
index=7

RAM buffer
index=8

cache_dev

Flush
daemon



Log format
with alignment care for crash durability

segment
header Data[0] Data[1] Data[2] Data[3]

id (8byte)

checksum (4byte)

length (1byte)

padding (499byte)

metablock[0]

metablock[1]

sector (8byte)

dirty_bits (1byte)

padding (7byte)

sector-aligned for 
atomicity

2^k-aligned so that no 
metablock straddles two 
sectors



Writeback
From SSD to HDD



Autonomous writeback switching

Writeback
Daemon

Writeback
Modulator

HDDSSD

read sort then write
I/O stat

turn on/off
enable_writeback_modulator=1



Batching and Sorting
● Batching: Writeback daemon fetches multiple 

segments (tuned by nr_max_batched_writeback)
● Sorting: And then sorts all the cache blocks in the 

segments by the destination address, using rbtree. This 
can make use of sequential write performance of 
backing rotational disk.
○ We should not trust I/O scheduler



Read caching



Requirements
● Read caching works in log-structured manner as well as 

write caching. They should co-exists in the same cache 
device. => share the internal write path

● Don’t cache read data larger than user-defined 
threshold.
○ Problem: Since we split the in-coming bio to 4KB 

chunks, we lost the information of how large the 
original bio is. => read cache cells



The basic concept:
Write the read data after completion

Process Read

Internal write path

Process Write

Read from SSDRead from HDD

Read 
Completion

In completion, bio has read data.

By sharing the internal write 
path, both write caching and 
read caching can co-exist in the 
same log.



Thresholding

Internal write path

read cache cells

Read completion

5 6 1 0 2 9 4 3

data

addr

Read data are once buffered in read 
cache cells so we can detect the 
sequentiality. In this figure, we can 
detect sequences of length 7 (from 0 
to 6) and a separate length 1 (only 
9), respectively.

Sequentiality is detected to not 
cache data sequence which is too 
sequential.


