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The scope of this slides

e Help those who wants to deeply understand
dm-writeboost.

e Compliments doc/dm-writeboost-readme.txt

e Includes figures that helps you read the
code.



Overview of dm-writeboost

e Block-level log-structured caching driver for Linux, influenced by
Disk Caching Disk (DCD).
e Features

O

Durable: Each log contains data and metadata atomically. So
never lose data on any failure.

Long lifetime of SSD cache device: We only need to write to
SSD once per 127 writes.

Fast: Compared to dm-cache and bcache, random write is
efficient.

Portable: Support kernel 3.10 to the latest.



What is DCD?

A block-level log-structured caching influenced by Splite LFS

Interface
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http://lwww.ele.uri.edu/research/hpcl/DCD/DCD.html



http://www.ele.uri.edu/research/hpcl/DCD/DCD.html
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Producer-Consumer Model
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RAM buffers and segments on SSD are ring buffer,
which is a good data structure for producer-consumer

model.



btt Generated Block Accesses

‘dm_btt_254,3 w.dat’ +

olole]
DO

cks p

~~~N Booocom
o>

Sowpiow
ONBOM

250. 5
25 25T55% lock Number

Time (secsz)sz'

Random writes to a caching device

Visualize the I/O trace

btt Generated Block Accesses
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Flushing the Logs
From RAM buffer to SSD



Foreground Processing
Storing writes in RAM buffer
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Write data are once stored into RAM
buffer in order of acceptance

RAM buffer
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RAM buffer is queued as a flush job when it is full
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Log format

with alignment care for crash durability
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Writeback
From SSD to HDD



Autonomous writeback switching
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Batching and Sorting

e Batching: Writeback daemon fetches multiple
segments (tuned by nr_max_batched_writeback)

e Sorting: And then sorts all the cache blocks in the
segments by the destination address, using rbtree. This
can make use of sequential write performance of
backing rotational disk.

o We should not trust I/O scheduler



Read caching



Requirements

e Read caching works in log-structured manner as well as
write caching. They should co-exists in the same cache
device. => share the internal write path

e Don’t cache read data larger than user-defined
threshold.

o Problem: Since we split the in-coming bio to 4KB
chunks, we lost the information of how large the
original bio is. => read cache cells




The basic concept:
Write the read data after completion

Process Write Process Read
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Read from HDD Read from SSD
By sharing the internal write Read
path, both write caching and Completion
read caching can co-exist in the P

same log. In completion, bio has read data.

Internal write path




Thresholding

read cache cells
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Read completion

¢

Read data are once buffered in read

cache cells so we can detect the
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Internal write path

sequentiality. In this figure, we can
detect sequences of length 7 (from O
to 6) and a separate length 1 (only
9), respectively.

Sequentiality is detected to not
cache data sequence which is too
sequential.



