1 of 186

12M07�INTEGRALS

2 of 186

 

 

 

 

 

 

 

 

 

 

 

Differentiation

 

 

 

3 of 186

 

 

differentiation

???

 

 

 

A

 

??

 

B

 

??

4 of 186

12M07.1�Integration as an anti-derivative

5 of 186

12M07.1 Integration as an anti-derivative

Learning Objectives

Introduction to Integration

Geometrical Meaning of Constant of Integration

Integration of some Standard Functions

Properties of Integration

6 of 186

12M07.0 Revision

  •  

7 of 186

Recall Test

8 of 186

  •  

9 of 186

12M07.1

CV1

Introduction to Integration

10 of 186

 

 

 

 

 

 

 

 

 

Derivative

 

Anti-Derivative

Integration

 

 

11 of 186

Integration – Inverse Process of Differentiation

 

 

B

 

 

 

 

 

derivative

 

Anti- derivative

Inverse

A

12 of 186

Activity

13 of 186

�Fill in the Blanks

14 of 186

�Fill in the Blanks

15 of 186

12M07.1

CV2

Nomenclature of Integration

16 of 186

 

Differentiation

 

 

 

Integration

 

 

Ex.

 

 

17 of 186

Integration of Standard Functions - Examples

���Here are some examples of derivatives , �try to find the anti-derivatives for same functions.

 

 

18 of 186

12M07.1

CV3

Constant of Integration

19 of 186

Activity

20 of 186

Fill in the Blanks

Pause the Video

(Time Duration : 02 Minutes)

21 of 186

Fill in the Blanks

 

 

 

 

22 of 186

  •  

 

 

 

23 of 186

12M07.1

CV4

Geometrical Meaning of Constant of Integration

24 of 186

 

 

 

 

 

 

 

 

 

25 of 186

  •  

 

 

 

26 of 186

12M07.1

CV5

Integration of some Standard Functions

27 of 186

Activity

28 of 186

Fill in the Blanks

29 of 186

Fill in the Blanks

 

 

 

 

 

30 of 186

 

 

 

 

 

 

 

 

 

31 of 186

12M07.1

CV6

Properties of Integration

32 of 186

Constant Rule:

Addition/Subtraction Rule:

 

 

Ex.

 

 

 

 

 

 

33 of 186

12M07.1

CV7

Special Case of Integration

34 of 186

 

 

 

 

 

 

 

 

 

 

 

35 of 186

12M07.2

Integration by Substitution

36 of 186

Learning Objectives

What is Integration by Substitution

How to Calculate Integration by Substitution

12M07.2 – Integration by Substitution

37 of 186

12M07.2

CV 1

What is Integration by Substitution

38 of 186

 

 

 

39 of 186

 

 

 

 

 

 

 

 

 

 

40 of 186

 

 

 

 

 

 

Steps

 

 

 

 

Sol.

Ex.

 

(NCERT - Exercise 7.2 - Q1)

 

41 of 186

 

42 of 186

Ex.

 

 

 

 

 

 

 

Steps

 

 

 

 

 

 

 

Sol.

 

 

 

 

 

 

 

43 of 186

12M07.2

PSV 1

44 of 186

 

 

 

 

 

 

Q.

Sol.

 

 

 

 

 

 

 

 

 

 

(NCERT - Exercise 7.2 - Q29)

 

45 of 186

12M07.2

PSV 2

46 of 186

 

 

 

 

 

 

 

 

Sol.

Q.

 

 

 

 

 

 

 

 

 

 

 

(NCERT - Exercise 7.2 - Q. No. 37)

47 of 186

 

 

 

 

 

 

 

 

Sol.

Q.

 

 

 

 

 

 

 

 

 

 

 

(NCERT - Exercise 7.2 - Q37)

 

48 of 186

12M07.2

PSV 3

49 of 186

 

Q.

(NCERT - Exercise 7.2 – Q19)

50 of 186

 

 

 

 

 

 

 

 

 

 

 

 

 

Q.

Sol.

 

(NCERT - Exercise 7.2 – Q20)

 

 

 

 

 

51 of 186

12M07.2

PSV 4

52 of 186

 

 

 

 

 

 

 

 

 

 

 

Q.

Sol.

 

 

 

(NCERT - Exercise 7.2 - Q32)

 

53 of 186

 

 

 

 

 

 

Q.

Sol.

 

 

54 of 186

ConcepTest

Ready for a Challenge

55 of 186

Q.

 

Sol.

 

 

 

 

 

 

 

 

 

 

 

Pause the video

( Time Duration : 4 Minutes )

Ncert Ex. 7.2 Q.11

56 of 186

Q.

 

Sol.

 

 

 

 

 

 

 

 

 

 

 

 

(NCERT - Exercise 7.2 - Q11)

57 of 186

Q.

 

 

 

 

 

 

 

 

 

 

 

 

 

Sol.

Pause the video

( Time duration : 4 Minutes )

58 of 186

 

Q1

Q2

 

Q3

 

Q4

 

Q5

 

(NCERT - Exercise 7.2 - Q18)

(NCERT - Exercise 7.2 - Q25)

(NCERT - Exercise 7.2 - Q4)

(NCERT - Exercise 7.2 - Q9)

(NCERT - Exercise 7.2 - Q33)

59 of 186

 

Q1

Q2

 

Q3

 

Q4

 

Q5

 

 

 

 

 

 

60 of 186

Summary

3,8,16(I)

 

61 of 186

Reference Questions

NCERT Exercise 7.2 :

2,3,5,7,8,10,12,13,14,15,16,17,20,21,22,23,24,26,27,28,30,31,34,35,36,38,39

Work Book :

3,8,16(I)

62 of 186

12M07.2 – Integration by Substitution

Reference Questions

NCERT Exercise 7.2 :

Work Book :

2,3,5,7,8,10,12,13,14,15,16,17,20,21,22,23,24,26,27,28,30,31,34,35,36,38,39

3,8,16(I)

63 of 186

12M07.3

Integration using Trigonometric Identities

64 of 186

Learning Objectives

When do we use Trigonometric Identities

Integration using Trigonometric Identities

12M07.3 – Integration using Trigonometric Identities

65 of 186

Revision

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product to Sum Formulae

66 of 186

12M07.3

CV 1

When do we use Trigonometric Identities

67 of 186

 

 

 

 

 

68 of 186

12M07.3

CV 0

Trigonometric Identities

69 of 186

12M07.3

CV 2

Integration using Trigonometric Identities

70 of 186

 

 

 

 

 

Sol.

Ex.

 

71 of 186

 

Sol.

Ex.

 

72 of 186

 

 

 

 

 

 

Sol.

Ex.

 

 

73 of 186

12M07.3

PSV 1

74 of 186

 

 

 

 

 

Sol.

Q.

 

 

75 of 186

12M07.3

PSV 2

76 of 186

 

 

 

Q.

Sol.

 

 

 

 

 

 

 

 

 

 

(NCERT - Exercise 7.3 – Q11)

77 of 186

12M07.3

PSV 3

78 of 186

 

 

 

 

 

 

Sol.

Q.

 

(NCERT - Exercise 7.3 – Q12)

 

79 of 186

ConcepTest

Ready for a challenge

80 of 186

 

 

 

 

 

 

Sol.

Q.

 

Pause the Video

( Time Duration : 4 Minutes )

 

(NCERT - Exercise 7.3 – Q13)

81 of 186

 

Q1

Q2

 

Q3

 

Q4

 

Q5

 

(NCERT - Exercise 7.3 - Q10)

(NCERT - Exercise 7.3 – Q14)

(NCERT - Exercise 7.3 – Q3)

(NCERT - Exercise 7.3 – Q8)

(NCERT - Exercise 7.3 – Q18)

82 of 186

 

Q1

Q2

 

Q3

 

Q4

 

Q5

 

 

 

 

 

 

83 of 186

12M07.3 – Integration using Trigonometric Identities

Reference Questions

NCERT Exercise 7.3 :

Work Book :

1,2,4,5,6,7,9,15,16,17,19,20,21,22,23,24

12, 19(IV), 20(I)

84 of 186

Summary

3,8,16(I)

 

85 of 186

12M07.4

Integrals of Some Particular Functions

86 of 186

Learning Objectives

How to use Trigonometric Ratios

Integrals of Particular Functions

12M07.4 –Integrals of Some Particular Functions

87 of 186

12M07.4

CV 1

How to use Trigonometric Ratios

88 of 186

 

 

 

 

 

89 of 186

 

 

 

 

 

 

90 of 186

 

91 of 186

 

 

 

 

 

 

 

 

 

 

92 of 186

 

Using Standard form

 

 

Sol.

 

Ex.

 

93 of 186

 

94 of 186

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95 of 186

 

 

 

 

 

 

 

 

 

 

 

96 of 186

 

Using Standard form

 

 

Sol.

 

Ex.

 

97 of 186

12M07.4

PSV 1

98 of 186

 

 

 

 

 

 

Sol.

 

Q.

(NCERT - Exercise 7.4 – Q4)

 

 

99 of 186

12M07.4

PSV 2

100 of 186

 

 

 

 

 

 

 

Sol.

Q.

(NCERT - Exercise 7.4 – Q3)

 

 

 

101 of 186

 

102 of 186

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

103 of 186

 

 

 

 

 

 

 

 

104 of 186

 

Using Standard form

 

 

Sol.

 

Ex.

 

 

105 of 186

 

106 of 186

 

 

 

 

 

 

 

 

 

 

107 of 186

 

Using Standard form

 

 

Sol.

 

Ex.

 

108 of 186

Special forms of Integrals

109 of 186

Special forms of Integrals

110 of 186

12M07.4

PSV 3

111 of 186

 

 

 

Sol.

 

 

 

Q.

 

112 of 186

12M07.4

PSV 4

113 of 186

 

 

 

 

 

 

Sol.

 

 

Q.

(NCERT - Exercise 7.4 - Q1)

114 of 186

ConcepTest 1

Ready for a Challenge

115 of 186

 

 

 

 

 

 

Sol.

 

 

 

Q.

Pause the video

( Time duration : 4 Minutes )

(NCERT - Exercise 7.4 – Q12)

 

116 of 186

12M07.4

CV 6

Integral of Particular Function

117 of 186

 

 

 

 

Solve this and find value of A and B

 

118 of 186

 

 

Sol.

 

 

Ex.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(NCERT - Exercise 7.4 – Q21)

119 of 186

ConcepTest 2

Ready for a Challenge

120 of 186

 

 

Sol.

 

 

Ex.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pause the Video

( Time Duration : 5 Minutes )

(NCERT - Exercise 7.4 – Q22)

121 of 186

 

Q1

Q2

 

Q3

 

Q4

 

Q5

 

(NCERT - Exercise 7.4 – Q8)

(NCERT - Exercise 7.4 – Q10)

(NCERT - Exercise 7.4 – Q2)

(NCERT - Exercise 7.4 – Q5)

(NCERT - Exercise 7.4 – Q23)

122 of 186

 

Q1

Q2

 

Q3

 

Q4

 

Q5

 

 

 

 

 

 

123 of 186

Summary

3,8,16(I)

 

124 of 186

Summary

3,8,16(I)

 

125 of 186

12M07.4 – Integral of some Particular Functions

Reference Questions

NCERT Exercise 7.2 :

Work Book :

6,7,11,13,14,15,16,17,18,19,

20,24,25

9,10,17(II)

126 of 186

12M07.4 – Integral of some particular functions

Reference Questions

NCERT Exercise 7.2 :

Work Book :

6,7,11,13,14,15,16,17,18,19,

20,24,25

9,10,17(II)

127 of 186

 

 

 

 

Sol.

 

 

 

 

 

Q.

 

128 of 186

Special forms of Integrals

129 of 186

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

130 of 186

�12M07.5�Integration by Partial Fractions�

131 of 186

Integration By Partial Fractions

  •  

132 of 186

Principle

  •  

133 of 186

12M07.5�CV1�When Denominator is in Factors Form

134 of 186

  •  

 

 

135 of 186

12M07.5�PSV01

136 of 186

  •  

 

 

137 of 186

12M07.5�CV2�When Denominator is in Square of Factors Form

138 of 186

  •  

 

 

 

 

139 of 186

Improper to proper rational functions

  •  

 

140 of 186

12M07.5�PSV02

141 of 186

  •  

Improper Function

 

142 of 186

 

143 of 186

  •  

 

 

 

 

 

 

 

144 of 186

12M07.5�PSV02

145 of 186

  •  

 

 

 

146 of 186

12M07.5�CV4�Derivation of formulae using partial fractions

147 of 186

  •  

 

 

148 of 186

12M07.6�Integration by Parts

149 of 186

Integration By Parts

Learning Objectives:

  • Principle
  • Anti-derivative of Product rule
  • ILATE rule
  • Special cases

150 of 186

12M07.6�CV1�Anti-derivative of Product Rule

151 of 186

Principle

  •  

Substitution

Trigonometrical �Identities

Partial �Fractions

 

 

152 of 186

Anti-derivative of product rule

  •  

 

 

 

153 of 186

ILATE rule

  •  

I�

L��A��T��E

Inverse Function

 

Logarithm Function

 

Algebraic Function

 

Trigonometric Function

 

Exponential Function

 

 

 

I L A T E

 

 

154 of 186

12M07.6�PSV 01

155 of 186

  •  

 

 

I L A T E

156 of 186

12M07.6�PSV 02

157 of 186

  •  

158 of 186

12M07.6�PSV 03

159 of 186

  •  

 

 

 

160 of 186

12M07.6�CV3�Special Cases

161 of 186

  •  

 

 

162 of 186

12M07.6�PSV 04

163 of 186

  •  

 

 

 

164 of 186

  •  

 

 

 

 

165 of 186

�12M07.6�PSV 05

166 of 186

  •  

 

 

167 of 186

12M08�Definite Integral

168 of 186

 

 

 

 

 

 

169 of 186

12M08.1�Definite Integral: The limit of A Sum

170 of 186

Definite Integral: The Limit of A Sum

Learning Objectives:

  • Principle
  • Conditions for a Definite Integral
  • The limit of a sum

171 of 186

Revision

If�

 

 

 

 

172 of 186

12M08.1�CV1�Definite Integral: The limit of A Sum

173 of 186

Principle

  •  

P

Q

R

S

 

 

 

 

 

 

 

  • Continuous Function

  • Non – negative values, graph above the x-axis

174 of 186

The limit of the sum

  •  

 

 

 

 

 

 

 

 

 

 

 

 

 

175 of 186

12M08.1�PSV 01

176 of 186

  •  

 

 

 

177 of 186

12M08.2�Evaluation of Definite Integral

178 of 186

Evaluation of Definite Integral

Learning Objectives:

  • Principle and conditions for area function
  • Evaluation of Definite Integral as area function
  • Evaluation of definite Integral by substitution

179 of 186

12M08.2�CV1�Evaluation for Area Function

180 of 186

Evaluation for Area Function

 

 

 

 

 

181 of 186

12M08.2�PSV01

182 of 186

  •  

 

183 of 186

12M08.2�PSV02

184 of 186

  •  

 

185 of 186

Evaluation of Definite Integral By substitution

  •  

 

 

 

 

186 of 186

  •