1 of 28

DEPARTMENT OF CIVIL ENGINEERING

TOPIC-DETERMINATION OF INCLUDED ANGLE

SEMISTER-4TH

PREPARED BY – ER SAROJ KUMAR NAYAK

(Lect. In Civil Engg Dept.)

AY:2021-2022

2 of 28

3 of 28

4 of 28

5 of 28

6 of 28

7 of 28

8 of 28

9 of 28

10 of 28

11 of 28

12 of 28

13 of 28

14 of 28

15 of 28

16 of 28

17 of 28

18 of 28

19 of 28

20 of 28

21 of 28

22 of 28

23 of 28

Line

Fore bearing

AB

   112°30 '

BC

    27°15'

CD

  276° 0'

DE

 187°45'

EA

 118°30'

The following bearings were noted down with a compass in an anticlockwise traverse. Calculate the interior angles of a closed traverse

24 of 28

1. Angle A:

 ∠A = [FB of line AB - BB of  line EA]

As fore bearing of EA < 180°, we have to add 180° to the FB.

BB of line EA 

                     = [118°30' + 180° ]

                     = 298°30'

              ∠A = [112°30' - 298°30']

                    = -186°

In the whole circle bearing system, the angle cannot be -ve. In such cases, we have to add 360° to the -ve angle.

 ∠A = [-186° + 360°]

         = 174°

25 of 28

2.  Angle B:

 ∠B = [FB of line BC - BB of  line AB]

As fore bearing of AB < 180°, we have to add 180° to the FB.

BB of line A B

                     = [112°30' + 180° ]

                     = 292°30'

              ∠B = [27°15' - 292°30']

                     = -265°15'

              ∠B = [-265°15' + 360°]

                     = 94°45

3. Angle C:

 ∠C = [FB of line CD - BB of  line BC]

As fore bearing of BC < 180°, we have to add 180° to the FB.

BB of line BC 

                     = [27°15' + 180° ]

                     = 207°15'

              ∠C = [276° - 207°15']

                    = 68°45

26 of 28

4. Angle D:

 ∠D = [FB of line DE - BB of  line CD]

As fore bearing of CD > 180°, we have to deduct 180° from the FB.

BB of line CD 

                     = [276° - 180° ]

                     = 96°

              ∠D = [187°45' - 96°]

                    = 91°45

5. Angle E:

 ∠E = [FB of line EA - BB of  line DE]

As fore bearing of DE > 180°, we have to deduct 180° from the FB.

BB of line DE 

                     = [187°45' - 180° ]

                     = 7°45'

              ∠E = [118°30' - 7°45']

                    = 110°45'

27 of 28

Check:

The total sum of interior angles

= [∠A +∠B + ∠C +∠D + ∠E]

= [174° + 94°45' + 68°45' + 91°45' + 110°45']

540°

The total value of the angle should be equal to [(2n -4) ✕90°], where n= no. of sides.

[(2 ✕ 5 - 4) ✕ 90°] = [6 ✕ 90°] = 540° 

28 of 28