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● Large Hadron Collider (LHC) measures particle collisions which are key for 
answering open questions in particle physics.

● Detector effects introduce bias into results and must be corrected for measurements 
of particle characteristics.

● Unfolding is the inverse problem of converting detector observations into more 
fundamental theoretical quantities.

● Use a latent diffusion model to tackle this generative inverse problem.
● Map from ATLAS detector measurements to MadGraph parton momenta for 

simulated semi-leptonic ttbar events.
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● Diffusion models are a type of conditional (c) generative model which learns 
the reverse dynamics for a Gaussian stochastic differential equation.

● Given a noise schedule based on log signal-to-noise ratio 𝛾, define our flow.

● Train a network to estimate ϵ and sample according to inverse SDE.

From Diffusion to Variational Latent Diffusion
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● Latent Diffusion (LDM)2 performs the forward and reverse SDE in a latent 
space from a pre-trained VAE. This VAE is usually pre-trained in either 
unsupervised manner with only the data or with a contrastive objective such 
as CLIP.

● Variational Diffusion (VDM)3 Interprets the entire diffusion model as a 
hierarchical variational model with infinite depth. This allows us to learn an 
optimal learning rate for our diffusion.

From Diffusion to Variational Latent Diffusion
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● We combine these ideas into a single unified end-to-end model.
● VAE is optimized to find ideal space to perform diffusion in.

○ Interpreted as another layer in the hierarchical VAE, introduce additional regularization loss.
○ Latent space may be higher dimensional than data space! 

● Noise Schedule is optimized simultaneously as in VDM.
○ Continuous time diffusion process is used for training.
○ Inference is performed in discrete time.

From Diffusion to Variational Latent Diffusion



● Compare each of these models to evaluate the effect of the latent space and 
unified training.

● Also compare the a simple Conditional VAE (CVAE) and a current SOTA 
normalizing flow-based model (CINN)4.

● Notice latent space is very important to model performance, and unified 
training outperformed pre-trained LDM.

Distribution-Free Metrics Results
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Testing Dataset Kinematics Distributions
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Posterior Distribution Examples

● Compare posterior distributions produced by the LVD for individual example 
events to an empirical estimate of the posterior from the testing dataset.

● Notice that the LVD has very tight posteriors for challenging kinematics 
including the Mass and Pt.

● Notice that the LVD managed to discover a bi-modal posterior for neutrino eta!



Future Work

● Current method is limited to a specific topology, want to extend beyond this to 
perform particle level unfolding.

● We lose the definite fixed-length encoding available due to the parton’s 
feynman diagram. Particles are variable length!

● Extend this method to be able to unfold an arbitrary number of objects 
simultaneously.
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