
New LLD linker for ELF
A high performance linker from the LLVM project

Rui Ueyama
Google

History

We started rewriting COFF (Windows) linker in May 2015.

Ported the proven design to ELF (Unix) in July 2015.

Capabilities

Has a GNU-compatible command line interface.

Can build the full x86-64 FreeBSD userland (buildworld) with a few small
workarounds.

PPC64, AArch64 and MIPS support is in progress. LLD can link small programs
for these platforms.

Linker script support is in progress.

Design goals

Speed

Simplicity

Extensibility

Linking medium-
sized programs

Built Clang, LLD, llc and GNU gold with
LLD.

Multi-threading support was enabled if
the linker supports it. Measured on
Xeon E5-2680 2.8 GHz processor. All
files are on SSD.

Linking a large
program

Built Chrome with debug info. The
resulting executable size is about 2
GB.

ICF is an optimization to detect
identical sections to eliminate them. It
is computationally intensive.

"cp" sets the lower bound. It takes 4.4
seconds to copy the 2 GB file on my
SSD.

LLD creates it in 14.4 seconds at its
best. gold at least takes 41.1 seconds.

Speed by design

Three key design choices for speed:

● Efficient archive file handling
● Do less rather than do it efficiently
● If a costly operation is inevitable, do it only once

What is linking?

To describe the difference of the
archive file handling between the
traditional Unix linker and LLD, I'll
describe the traditional linker's
semantics first.

A primitive form of the linker is
basically a "cat" program with
additional code to fix up addresses
referring other compilation units.

Object files have global symbols and
relocations for fix up.

obj obj obj

Linker

exe

libWhat is linking?

Managing the list of object files is
painful, so the static archive file was
invented.

Archive files contain object files. The
linker extracts object files that provide
definitions for undefined symbols.

Archive files have their own symbol
tables in their headers for fast symbol
lookup.

obj

Linker

exe

liblib
libliblib

A weakness of Unix linker's semantics

The linker visits files sequentially. What it does depends on file type.

● If it is an object file, link it.
● If it is an archive file, extract object files that have definitions for undefined

symbols and link them.

That means the linker has a set of undefined symbols and will read files until
the set becomes empty.

Sequential file handling

objx libliblibx
libliblibyobjy

{A, B}

Sequential file handling

objx libliblibx
libliblibyobjy

{B, C, D}

Sequential file handling

objx libliblibx
libliblibyobjy

{E}

Sequential file handling

objx libliblibx
libliblibyobjy

{}

When the set becomes empty, the link is done.

The linker then concatenates all object files it
has visited, fixes up relocations, and writes it
down to a file.

Linking mutually-
dependent archive
files

Linking mutually-dependent archive
files is tricky because the linker visits
files only sequentially.

In the case to the right, the link will fail
even if libx provides a definition of F.

There are solutions.

You may either specify the same file
more than once or use the special
options --start-group and --end-group
to resolve mutual dependencies.

libliblibx
liblibliby

{F}

Specifying the same file more than once

objx libliblibx
libliblibyobjy libliblibx

{F}

Obviously, it is awkward. Unless you know
how many repetitions are needed, it may
fail.

Use --start-group and --end-group

libliblibx
liblibliby

{F}

()
The linker repeats the files between
--start-group and --end-group until no new
symbols are added to the set.

It works, but it is inefficient as the linker visits
the same file many times (at least twice).

objx objy

LLD's semantics on archive files

In both cases it is awkward to handle mutually-dependent archive files.

A natural question would be "why does the linker have to visit sequentially?"

The answer is "it doesn't have to." That's the way how LLD handles archive files.

objx libliblibx
libliblibyobjy

A: Defined
B: Undefined

libliblibx
liblibliby

A: Defined
B: Defined
C: Undefined
D: Undefined

A: Defined
B: Undefined

objx objy

libliblibx
liblibliby

A: Defined
B: Defined
C: Defined
D: Undefined
E: Undefined
F: Lazy (obja in libx)
G: Lazy (objb in libx)
H: Lazy (objb in libx)

A: Defined
B: Defined
C: Undefined
D: Undefined

A: Defined
B: Undefined

objx objy

libliblibx
liblibliby

A: Defined
B: Defined
C: Defined
D: Defined
E: Defined
F: Lazy (obja in libx)
G: Defined
H: Lazy (objb in libx)

A: Defined
B: Defined
C: Undefined
D: Undefined

A: Defined
B: Undefined

objx objy

A: Defined
B: Defined
C: Defined
D: Undefined
E: Undefined
F: Lazy (obja in libx)
G: Lazy (objb in libx)
H: Lazy (objb in libx)

LLD's semantics on archive files

Is this completely compatible with the traditional semantics?

● No. You can observe the difference if you carefully craft archive files to
exploit it intentionally.

Is it going to cause problems?

● Unlikely. We don't know any program that fails to link because of this.

It is a very good tradeoff.

Numbers you want to know

Today's programs are large. Chrome with debug info is almost 2 GB. In order to
produce the executable, the linker reads and processes

● 17,000 files,
● 1,800,000 sections,
● 6,300,000 symbols, and
● 13,000,000 relocations.

LLD does this in 14.4 seconds. Copying 2 GB on my SSD takes 4.4 seconds, so
we only have 10 seconds left.

Efficient symbol
handling

Inserting 6.6 million strings to a hash
table takes 1.5 seconds. We don't want
to do that more than once.

We separate symbol into two: Symbol
and SymbolBody. Symbols are handles
for SymbolBodies. SymbolBodies are
container of actual data.

For each new string, we look in the hash
table only once.

Symbol is just a pointer. Each
SymbolBody has a pointer to a Symbol.

printf

main

foo

_text

_Zn5foo...

...

Symbol table
(Hash table)

Symbols

Type (Defined,
Undefined or Lazy)
Name
Visibility
...

SymbolBodies

Pointer mutation is
name resolution

Symbol resolver's job is to mutate
pointers so that they point to the "best"
symbols of all known ones.

Preference is binary relations:
Undefined < Lazy < Defined

The linker creates SymbolBodies for all
symbols for each object file and adds
them to the symbol table. Symbol
pointers are then updated according to
the symbol preferences.

Symbol table
(Hash table)

Symbols SymbolBodies

Type: Undefined
...

printf

main

foo

_text

_Zn5foo...

...

Pointer mutation is
name resolution

Symbol resolver's job is to mutate
pointers so that they point to the "best"
symbols of all known ones.

Preference is binary relations:
Undefined < Lazy < Defined

The linker creates SymbolBodies for all
symbols for each object file and adds
them to the symbol table. Symbol
pointers are then updated according to
the symbol preferences.

Symbol table
(Hash table)

Symbols SymbolBodies

Type: Undefined
...

Type: Defined
...

printf

main

foo

_text

_Zn5foo...

...

Handling duplicate
definition errors

If two Defined symbols A and B are
added, and if neither A < B nor B < A,
they are "conflicting" symbols.

In that case, the linker reports an error.

Symbol table
(Hash table)

Symbols SymbolBodies

Type: Defined
...

Type: Defined
...

printf

main

foo

_text

_Zn5foo...

...

Extracting files
from archive files

This is where object files in archive
files are extracted.

If one symbol is Lazy and the other is
Undefined, then we need to extract the
object file for the Lazy symbol to get a
real Defined symbol of the same
name.

The resolver triggers Lazy to let it load
the object file.

Symbol table
(Hash table)

Symbols SymbolBodies

Type: Lazy
...

Type: Undefined
...

printf

main

foo

_text

_Zn5foo...

...

Extracting files
from archive files

This is where object files in archive
files are extracted.

If one symbol is Lazy and the other is
Undefined, then we need to extract the
object file for the Lazy symbol to get a
real Defined symbol of the same
name.

The resolver triggers Lazy to let it load
the object file.

Symbol table
(Hash table)

Symbols SymbolBodies

Type: Lazy
...

Type: Undefined
...

Type: Defined
...

printf

main

foo

_text

_Zn5foo...

...

Obtaining symbol
resolution results

SymbolBodies are created for each
object file.

To apply relocations, we need to know
how symbols were resolved. Because
the number of relocations is large, it
must be doable very efficiently.

It can be done with two pointer
dereferences because only the most
preferred SymbolBodies are pointed to
by Symbols. It's very cheap!

Symbols

Type: Defined
...

Type: Defined
...

Type: Undefined
...

Type: Defined
...

File A

Type: Undefined
...

Type: Defined
...

...

...

File B

Even tricky
features are easy
to implement
This data structure allows us to
implement symbol renaming very
efficiently and easily.

If --wrap=foo is given, any undefined
reference to foo will be resolved to
"__wrap_foo". Any undefined reference
to "__real_foo" will be resolved to foo.

Complicated? It is actually not.

We first resolve all symbols normally
and then swap pointers as shown to
the right.

Symbol table
(Hash table)

Symbols

Type: Defined
Name: foo
...

Type: Defined
Name: __wrap_foo
...

Type: Undefined
Name: __real_foo
...

foo

__wrap_foo

__real_foo

...

Even tricky
features are easy
to implement

foo

__wrap_foo

__real_foo

...

Symbol table
(Hash table)

Symbols

Type: Defined
Name: foo
...

Type: Defined
Name: __wrap_foo
...

Type: Undefined
Name: __real_foo
...

This data structure allows us to
implement symbol renaming very
efficiently and easily.

If --wrap=foo is given, any undefined
reference to foo will be resolved to
"__wrap_foo". Any undefined reference
to "__real_foo" will be resolved to foo.

Complicated? It is actually not.

We first resolve all symbols normally
and then swap pointers as shown to
the right.

Link-Time Optimization (LTO)

LTO support is in progress.

For LTO, LLVM bitcode files are given to the linker instead of object files in the
native (ELF) format. The linker resolves all symbols normally. Once all symbols
are resolved, it passes all bitcode files to LLVM to get one gigantic object file.

It then replace all bitcode symbols with object file symbols by pointer mutation
to continue linking as if it were given native object files from beginning.

Future work

● Make it usable as a system's default linker
○ FreeBSD is likely to be the first operating system to adopt LLD
○ Comprehensive linker script support is needed to link the kernel

● Optimize performance
○ Although it's already pretty fast, the current performance numbers are naturally achieved

by design, so we haven't done any serious optimization yet
○ Parallelize using threads

● Support more platforms

