
Presented by Deepak Sood

From Zero to Hero: 
Mastering GenAI in a 

Flash



whoami
Senior AI, Data and DevOps Architect @ OpsTree

- M.Tech IIITD CSE 2015-17 Batch

- Software Engineer

- DevOps Engineer

- Data Engineer

- Engineering Lead

- Architect

- Product + Project + Leadership + Strategy + Hiring

Hobbies

- Learning

- Problem Solving

- Note Taking

- https://deepaksood619.github.io/

- http://linkedin.com/in/deepaksood619



Who has heard of the following things - 

1. AI

2. ML

3. ChatGPT

4. Using ChatGPT ?

5. Mid Journey / Dall.E

6. LLM

7. Models - Llama, Mixtral

8. Transformers

9. Embeddings

10. Tools - LangChain

11. Vector DBs

Current Levels



1. What is GenAI

2. What problem does it solve

3. What was before it

4. What is coming up

Technicals

1. Prompt Engineering

2. LLMs

3. Embeddings

4. RAGs

5. Hands-on - prompt engineering

6. Hackathon - GenAI RAG

Objective



Before AI/ML - Simple Rule-Based 
Programming

Rule-Based Systems: Programs that operate using a predefined set of rules (e.g., "if-else" 

statements) to make decisions or solve problems.

How it Works:

Fixed Logic: Developers write explicit rules that dictate the program's behavior in specific 

scenarios.

Deterministic: The outcome is predictable and the same every time for the same input.

Key Characteristics:

Static Rules: Cannot adapt or learn from new data.

Limited Complexity: Only works well for simple, clearly defined tasks.



Challenges with Rule-Based 
Programming

Scalability Issues:

Inflexibility: Adding new rules or changing existing ones requires manual updates, leading to complex 

and unmanageable code as the system grows.

Rule Explosion: Large numbers of rules can make the system cumbersome, hard to maintain, and 

prone to errors.

Lack of Adaptability:

No Learning: Cannot adapt to new situations or learn from past experiences.

Limited Scope: Inefficient for complex problems requiring pattern recognition, prediction, or 

handling ambiguity.



Artificial Intelligence (AI): Refers to machines simulating human intelligence processes.

Machine Learning (ML): A subset of AI where models learn patterns from data to make predictions or 

decisions without explicit programming.

Discriminative AI model: Trained on a dataset of images of cats and dogs and then used to classify new 

images as either cats or dogs.

Types:

Supervised Learning: Trained on labeled data.

Unsupervised Learning: Identifies patterns in unlabeled data.

Reinforcement Learning: Learns by interacting with the environment and receiving feedback.

Key Characteristics:

Data-Driven: Relies heavily on large datasets.

Task-Specific: Models are designed for specific tasks (e.g., image recognition, language translation).

Feature Engineering: Manual process of selecting relevant features from raw data for better model accuracy.

What are Traditional AI/ML Models?



Data Dependency:

Volume Requirement: Needs vast amounts of labeled data, which can be costly and time-consuming to 

gather.

Quality Issues: Performance is sensitive to data quality; biases and errors in data can degrade model 

accuracy.

Generalization Limitations:

Task-Specific: Struggles with adapting to new tasks or domains without significant retraining.

Scalability: Expanding the model’s scope often requires complex retraining processes.

Development Complexity:

Feature Engineering: Requires expert knowledge to handcraft features, making model development 

time-intensive.

Model Interpretability: Models can be black boxes, making it difficult to understand and explain decisions.

Challenges with Traditional AI/ML Models



Introduction 
to GenAI

Generative AI is revolutionizing the way we interact with 

technology. By leveraging advanced algorithms, we can create 

content that mimics human creativity.

● GenAI focuses on creating new content such as text, images, 

music or even code.

● History - From rule-based systems to advanced neural 

networks.

● Key breakthroughs and milestones - GANs and transformer 

models have significantly advanced GenAI.



A large language model is a type of artificial intelligence algorithm that applies neural network 

techniques with lots of parameters to process and understand human languages or text using 

self-supervised learning techniques. Tasks like text generation, machine translation, summary 

writing, image generation from texts, machine coding, chat-bots, or Conversational AI are 

applications of the Large Language Model. Examples of such LLM models are Chat GPT by open 

AI, Gemini by Google, Llama by Meta, etc.

Foundation Models: A foundation model is a large AI model pre-trained on a vast quantity of 

data that was "designed to be adapted” (or fine-tuned) to a wide range of downstream tasks, 

such as sentiment analysis, image captioning, and object recognition.

LLMs



Working with LLMs - Prompt Engineering

Prompt Engineering: The process of designing and optimizing input prompts to effectively guide AI 

models, especially large language models (LLMs), in generating accurate, relevant, and contextually 

appropriate responses.

Key Concepts:

Prompt Structure: Crafting prompts that are clear, concise, and aligned with the desired outcome.

Iterative Refinement: Continuously tweaking and testing prompts to improve the quality and 

accuracy of AI-generated responses.

Task-Specific Prompts: Tailoring prompts to suit specific tasks like summarization, translation, or 

generating creative content.



Prompt Engineering - Examples

Example 1: Summarization

Prompt: "Summarize the following article in one paragraph: [Insert article text]."

Example 2: Question Answering

Prompt: "Based on the text provided, answer the following question: What are the key benefits 

of prompt engineering?"

Example 3: Creative Content Generation

Prompt: "Write a short story about a robot discovering emotions."



Writing better Prompt
Prompt 1: Create a presentation on topic “GenAI for Freshers”

Prompt 2:

● Create a presentation on topic “GenAI for Freshers”

● Outline

○ Introduction to GenAI

○ Introduction to RAG

○ Understanding RAG Fundamentals

● Target audience - Tech professionals and developers in the software industry

● Tone - The tone should be informative, engaging, and technically detailed to cater to the expertise level of the 

audience.

● Presentation goal - To inform and inspire tech professionals about the process of developing an AI-powered 

presentation app

● Number of slides - 12-15

● Presentation duration - 45 minutes to 1 hour

● Slide content density - Medium



Challenges 
with LLM

● Hallucinations - Presenting false information when it does 

not have the answer.

● Presenting out-of-date or generic information when the 

user expects a specific, current response.

● Creating a response from non-authoritative sources.

● Creating inaccurate responses due to terminology 

confusion, wherein different training sources use the same 

terminology to talk about different things.

These problems occur due to noisy, dirty, not given enough 

data, or model has not been given enough context.



Solution - RAG
Retrieval-Augmented Generation (RAG) is the process of 

optimizing the output of a large language model, so it 

references an authoritative knowledge base outside of its 

training data sources before generating a response. RAG 

extends the already powerful capabilities of LLMs to 

specific domains or an organization's internal knowledge 

base, all without the need to retrain the model. It is a 

cost-effective approach to improving LLM output so it 

remains relevant, accurate, and useful in various 

contexts.



Contextual 

Relevance

More developer 

control

Cost-effective 

implementation

Reducing 

hallucinations

Current 

information

Benefits 
of RAG

Enhanced user trust



Embeddings
Embeddings are numerical representations of data (such as words, images, or documents) in a 

continuous vector space, where similar items are placed closer together.

Purpose: They capture the semantic meaning and relationships between items, enabling AI models to 

perform tasks like similarity matching, classification, and clustering.

How Embeddings Work:

Vectorization: Converts complex data into fixed-size vectors of numbers.

Semantic Mapping: Similar data points (e.g., words with similar meanings) are mapped to nearby points 

in the vector space.

Example: In language models, the words "king" and "queen" are close to each other in the embedding 

space, reflecting their related meanings.



Embeddings role in RAG
Information Retrieval: Embeddings are used to represent both queries and documents. When a query is 

made, the system retrieves the most relevant documents by comparing their embeddings.

Contextual Relevance: The retrieved documents provide context to the AI model, which uses this 

information to generate more accurate and contextually appropriate responses.

Process:

Embedding Generation: Both the user's query and the corpus of documents are converted into 

embeddings.

Similarity Matching: The system searches for documents with embeddings similar to the query.

Response Generation: The retrieved documents are used to enhance the model’s response generation.

Algorithms - Approximate Nearest Neighbor (ANN) Search, Cosine Similarity, Euclidean Distance



RAG Framework



Components of 
RAG

KnowledgeBase Retriever
The RAG retriever component is 

responsible for the initial step of 

retrieving relevant information from 

external knowledge sources. It uses 

retrieval techniques such as 

keyword-based search, document 

retrieval, or structured database 

queries to fetch pertinent data.

The RAG ranker component refines 

the retrieved information by 

assessing its relevance and 

importance. It assigns scores or 

ranks to the retrieved data points, 

helping prioritize the most relevant 

ones.

The RAG generator component 

is responsible for taking the 

retrieved and ranked 

information, along with the user's 

original query, and generating 

the final response or output.

Ranker Generator
- APIs, databases, or document 

repositories.

- Formats like files, database 

records, or long-form text.

- Embedding language models in a 

vector database



Vector DBs

● VertexAI

● Pinecone

● Milvus

● Chroma

● Even - Mongo and 

Postgres

LLM Models

● Gemini Pro and Flash

● Llama 3.1

● OpenAI

● Mixtral

Tools for 
Building a 

RAG
Frameworks

● VertexAI

● LangChain

● LlamaIndex

● Haystack

Text Embeddings

● MTEB - Massive Text 

Embeddings Benchmark

● FlagEmbedding

● SFR-Embedding-2_R

● AnglE



Final 
reflections
RAG is a game-changer for LLMs, empowering LLMs with 

access to external knowledge are transforming their 

capabilities. By leveraging powerful tools like Gemini and 

Vertex AI, developers and businesses can harness the 

potential of RAG to build intelligent and insightful AI 

solutions.



https://deepaksood619.github.io
bit.ly/deepnotes

DO YOU HAVE ANY QUESTIONS TILL HERE?

http://linkedin.com/in/deepaksood619
https://bit.ly/deepak-link

Coming Up Next - Hands-on - Prompt Engineering using Gemini

https://deepaksood619.github.io
http://bit.ly/deepnotes
http://linkedin.com/in/deepaksood619
https://bit.ly/deepak-link


Hands-on - Prompt Engineering 
using Gemini

https://github.com/google-g
emini/cookbook

https://bit.ly/gemcook

1. Go to Google AI Studio.

2. Login with your Google account.

3. Create an API key.

4. Use a quickstart for Python, or call the REST API using curl.

https://github.com/google-gemini/cookbook/blob/main/quickst

arts/Prompting.ipynb

1. Run in Google Colab

2. Add API Key

3. GOOGLE_API_KEY=userdata.get('GOOGLE_API_KEY')

4. GOOGLE_API_KEY=”AIzaSyDDzhRT9Mn2hMN”

https://github.com/google-gemini/cookbook
https://github.com/google-gemini/cookbook
https://bit.ly/gemcook
https://github.com/google-gemini/cookbook/blob/main/quickstarts/Prompting.ipynb
https://github.com/google-gemini/cookbook/blob/main/quickstarts/Prompting.ipynb


Quiz with Google Badges

https://www.cloudskillsboost.google/course_templates/536
https://bit.ly/genai-quiz

● Get Certified: Receive a completion badge upon 

completion.

● Showcase on LinkedIn: Share your achievement 

with your network.

● Tag Us: Don't forget to tag @OpsTree Solutions and 

@Deepak Sood.

https://www.cloudskillsboost.google/course_templates/536
https://bit.ly/genai-quiz


https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/qa-ops/

building_DIY_multimodal_qa_system_with_mRAG.ipynb

https://bit.ly/ragexample

RAG Walkthrough

https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/qa-ops/building_DIY_multimodal_qa_system_with_mRAG.ipynb
https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/qa-ops/building_DIY_multimodal_qa_system_with_mRAG.ipynb
https://bit.ly/ragexample


Hackathon

https://deepaksood619.github.io/ai/llm/rag-hackathon-questions
https://bit.ly/raghack

https://deepaksood619.github.io/ai/llm/rag-hackathon-questions
https://bit.ly/raghack


Thanks

https://deepaksood619.github.io
bit.ly/deepnotes

DO YOU HAVE ANY QUESTIONS?

http://linkedin.com/in/deepaksood619
https://bit.ly/deepak-link

https://deepaksood619.github.io
http://bit.ly/deepnotes
http://linkedin.com/in/deepaksood619
https://bit.ly/deepak-link

