Robot MicroTract

ROS Agriculture (<u>ROS-A</u>) is a focused initiative using the Robot Operating System (<u>ROS</u>) for agriculture.

ullet ullet The guiding principles of ROS-A are <u>Do No Harm</u> and Isaac Asimov's "<u>Three Laws of Robotics</u>"

Functional Safety

A **robot** may not injure a human being or, through inaction, allow a human being to come to harm. A **robot** must obey orders given it by human beings except where such orders would conflict with the First **Law**. A **robot** must protect its own existence as long as such protection does not conflict with the First or Second **Law**.

Safe operating area

<u>Building a remote kill switch</u> <u>Vehicle Estop</u> <u>Robot Bumper</u>

MicroTrac Build Documentation

- <u>Matt Log</u>
- Twitter @ROSAgriculture
- ROS-A Discussion thread <u>https://discourse.ros.org/t/ros-a-microtractor-build-with-open-source-ecology/2830</u>

Notes: Working Visit at the Open Source Ecology site

Nov 4th, 2017

- Update ROS Driver for Razor IMU
- Order Relay

October 24, 2017

- Sensor fusion
- <u>State Estimation Nodes</u> from ROS
- <u>Move_basic</u> face direction of motion and go
- Follow_waypoints
- Sohin <u>ssohin@autlook.com</u> joined us Yamaha just donated a vehicle to make it autonomous. Grad student at U. Indiana, will publish all work. Including weed detection for corn.

Project Use Case - Self Driving Chicken Tractor

Video example

• 50' x 300' field - chicken tractor application

Vehicle Automation Resources

http://ardupilot.org/rover/

GPS overview - <u>http://ardupilot.org/rover/docs/common-positioning-landing-page.html</u> How GPS works - <u>http://ardupilot.org/rover/docs/common-gps-how-it-works.html</u> Inertial measurement unit (IMU)

How an IMU works

Software

Robot Operating System - <u>ros.org</u> - <u>Getting Started Guide</u> Gazebo Simulation - <u>gazebosim.org</u> Tutorial - <u>http://wiki.ros.org/ROS/Tutorials</u> Online Training - <u>http://www.theconstructsim.com/</u> Books - <u>Programming Robots with ROS</u>

Functional Safety

A **robot** may not injure a human being or, through inaction, allow a human being to come to harm. A **robot** must obey orders given it by human beings except where such orders would conflict with the First **Law**. A **robot** must protect its own existence as long as such protection does not conflict with the First or Second **Law**.

Safe operating area Building a remote kill switch Vehicle Estop Robot Bumper

Ground Control Station

ROS Tractor **MVP**

Hardware

Hardware

- Raspberry Pi 3
- Keyestudio 5V DC\AC 4-Channel Relay Shield Module Expansion Board for Raspberry Pi 3
- SparkFun 9DoF Razor IMU MO
- Waterproof SiRFIV USB GPS Receiver
- Radio Ethernet
- Vehicle Estop and Remote Estop
- hydraulic solenoid

Automation

Simulation

- <u>3D model of microtractor</u>
- Gazebo Simulation <u>gazebosim.org</u>
- <u>MicroTrac Simulator Repo</u>
- Hightmap for Gazebo
 - Digital Elevation Model first link on top of <u>this</u>
 - Google Map coordinates <u>Factor e Farm</u>
 - Create a DEM for Gazebo http://gazebosim.org/tutorials?tut=dem

Software

Software

- Project Repository
- Packages
 - Gps <u>http://wiki.ros.org/nmea_navsat_driver</u>
 - Imu <u>https://github.com/jeremy-a/razor_imu_9dof</u>
 - Gps to pose http://wiki.ros.org/gps_common
 - Nav stack <u>http://wiki.ros.org/robot_pose_ekf</u>
 - Notes <u>https://answers.ros.org/question/12663/gps-navigation/</u>
 - Move basic https://github.com/UbiquityRobotics/move_basic
 - Follow waypoints <u>https://github.com/danielsnider/follow_waypoints</u>
 - <u>Geonav_transform</u>? Simple transforms for using GPS-based estimates for local odometry in ROS
 - To-be-developed raspberry pi track control for microtrac (Jeremy has basic starter python code)
 - Basis <u>https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/</u>
 - <u>https://github.com/chrisspen/rpi_gpio</u>

Considerations

- Remote monitoring
 - Long range wifi from Pi
 - Remote access using DDS and ROS1_bridge?
- Future simple goal based navigation
 - Is the soil suitable to host chickens? If not, move on
 - Deep learning soil characterization

Future Tests using:

- Beagle Bone Black
- Beagle Bone Blue essentially BBB with better connectors
- <u>ErleBrain2</u> MCU, runs on a raspberry pi
- <u>Pixhawk</u> runs on a Cortex M4.
- SwiftNav Piksi -
- <u>PX4Flow</u>
- Vision Tracking using Pixy
- Intel RealSense
- Zed Stereo Camera

Industry Standards - Examples

- <u>Weed detection in 3D images</u> paper
- <u>An Autonomous Robot for Weed Control</u> paper
- <u>A Vision System for Autonomous Weed Detection Robot</u> paper
- <u>Plant localization with kinect paper</u>
- <u>Machine vision system for weed detection paper</u>
- Commercial system: <u>Garford robocrop more.</u>.
- European project Galileo

OpenCV Tractor - Motion Strategy

- <u>Tractor file</u>
- <u>Swift Navigation</u>
- Strategy marker every 4 meters machine straddles markers
 - Calibration marker at start
- Application weeding a 1.5 acre field about 100m by 20 meters
- Accuracy desired 3" from plants Case 1 - easier as it

~¾ meter plant spacing

100 m x 20 m

- Space at both ends
- Hardware -
 - <u>Raspberry Pi 3</u> -> <u>Raspberry Pi 0</u>
 - <u>Camera</u> also <u>amazon</u>
 - <u>Solenoid</u>s \$400 for 4
 - <u>Relay</u> 8 channels
 - 4 channels for 2 sides of tracks
 - 2 channels for a raising/lowering cylinder
 - 2 channels for a Power Takeoff motor
 - Power Cube v17.018
 - FreeCAD file Download
 - Solar Power Cube
 - 14 fpm at 1 kw, we expect 2 fpm at 200W - 720 feet per day for a 6 hour sun day - or 250m per day 1750 meters per week - or 34 rows or about 25 meters width of 100 m
 - Whole 20x100 meter field in less than a week

Turning

Next Step: Sample Data

Take a picture of this area: From what height? Height of camera, or 1 m.

