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Machine Learning, Deep Learning, AI … what are they?

Machine Learning



Machine Learning
Machine Learning, Deep Learning, AI … what are they?

Artificial Intelligence

Machine Learning

Deep Learning

Artificial Intelligence
● A computer with intelligence

Machine Learning
● Process to generate an intelligent 

algorithm from data.

Deep Learning
● ML methods that aim at complex 

pipelines working on low-level data



Machine Learning
Turning data into an algorithm
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Learning Framework
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Data Final
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How to machine learn?

1. Prepare data set.

2. Define a set of potential solutions 
(hypothesis models).

3. Define the performance metric 
(learning objectives).

4. Optimize using a learning 
algorithm. 



Data
In machine/statistical learning, we assume data is independently 

sampled from identical distribution. Sometimes acronymed “i.i.d”.

● Assumption: present and future data 
follow the same distribution.

○ The algorithms optimized using the 
existing data can be used to “predict” 
or “infer” things about the future data.

○ Inherent weakness:
■ Out-of-distribution
■ Distributional shift



Hypothesis Set

Algorithm = a numeric program with input and output

Popular choice to form a “set of candidate algorithm”: parametrization



Objective

Use the objective measure in order to choose the best hypothesis within 
the set. Use the objective to guide the learning process. Typically this is to 
minimize the error metric called “loss” or “risk”.

Objective = find 



Learning Algorithm 

Learning = choosing the best hypothesis within the set. Use the objective 
to guide the learning process.

● Analytical solution (rare)

● Grid = discrete search (lots of compute)

● Iterative update (most typical)



Data: {yi} sampled from true underlying distribution

Hypothesis set: 

Objective: 

Learning: 

Example: multivariate linear regression
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Example: neural network



Perceptron is a linear model and can be 
visualized as a linear line (in n-dimension).

One can use the “sigmoid” function as the 
activation function. In Statistics, this is 
known as the “logistic regression” (or linear 
binary classification)

Example: neural network



What if the data is not linearly separable?

Example: neural network



What if the data is not linearly separable?

Example: neural network

● Add a neuron



What if the data is not linearly separable?

Example: neural network

● Add a neuron
● Add a layer

The task became 
linearized in the 
new feature space

Multi-layer Perceptron (MLP)



More on Learning Algorithms



Goal: tune the parameters w and achieve  

Minimize the loss iteratively: 

called Gradient Descent (GD) where 𝜆 controls the rate of learning process.

Learning Algorithm: Gradient Descent (GD)



Learning Algorithm: Gradient Descent (GD) 
Goal: tune the parameters w and achieve  

Minimize the loss iteratively: 

called Gradient Descent (GD) where 𝜆 controls the rate of learning process.

Too small Just right Too large



Goal: tune the parameters w and achieve                    … faster?  

Mini-batch Stochastic GD (SGD) use a subset of data for gradient.

Learning Algorithm: Stochastic GD 



Goal: tune the parameters w and achieve                    … faster?  

Mini-batch Stochastic GD (SGD) use a subset of data for gradient.
1. Create a batch = random subset of data.
2. Compute the gradient for the batch and update the parameters.
Note: when data is always new (never seen before), called “online learning”

Learning Algorithm: Stochastic GD 



Learning Algorithm: beyond vanilla SGD 
Adaptive LR sets dynamic value based on the gradient magnitude, Momentum 
learns from the history to avoid being trapped by oscillating loss values, and much 
more research is done… a popular default choice is “Adam” optimizer.



Empirical Risk v.s. Bias



Expressivity of a Hypothesis Set

True solution

Best hypothesisHigh expressivity means that the 
hypothesis set can approximate 
many functions and more likely to 
contain a good representation of the 
true solution.

Model bias = loss @ best hypothesis

A sufficiently large neural network can become a “Universal 
Approximation Function” (i.e. can model any function), which 
makes neural network an interesting/popular model choice in ML.

Q: is there any con about a large model?



Statistical Learning

In order to learn, we must estimate the performance or minimize the 
“risk” or “loss.” The true expectation loss is:

Assume: data is a stochastic sample.



Assume: data is a stochastic sample.

In order to learn, we must estimate the performance or minimize the 
“risk” or “loss.” The true expectation loss is:

However, we only have data set (sample “s”) and have no access to p(s). 
We can have an unbiased approximation, the empirical loss

Statistical Learning



Empirical Risk Minimization
Choose a hypothesis from the set such that it performs best for the 
given dataset. The data size is critical.

Small data



Empirical Risk Minimization
Choose a hypothesis from the set such that it performs best for the 
given dataset. The data size is critical.

Big data



The empirical loss is always worse 
than the bias.

● Less expressive model = larger bias
● More complex model = larger variance

Bias-Variance trade off
The dataset size is finite and stochastically sampled. Within the same 
hypothesis set, the “best solution” h* depends on a specific dataset. 

Variance = the spread across {h*} among 
different datasets.



Choosing the Model w/ Trade-Offs
Recall: we can only measure the empirical risk but …
● Want to guess the best hypothesis based on the empirical risk
● Want to measure the model “generalization” performance

Learning 
Algorithm

Objective

Hypothesis 
Set

Data

Select the 
final 

hypothesis

Measure the 
model 

performance



Choosing the Model w/ Trade-Offs
Split the data 3 ways: training, validation, and test datasets
● Validation set = use to choose/tune the model
● Test set = use to assess the model performance (bias estimate)

How to choose the final model
● Pick the best performing one (early stopping)
● Modify the hypothesis set (hyper-param. tuning)

Train
Val

Model 
design Train Validate Test

Development Workflow

Deployment



Back to Neural Networks



Neural Network: Architecture Choice

Wide

Deep

OR



Universal Approximation Theorem

It can be shown that a MLP with single hidden layer is a universal 
function approximator (can represent any function). 

Why do we need a deep network?



Benefits of the depth

A neural network becomes exponentially more expressive with the 
depth due to composition of features  into higher level concepts.



Convolutional Neural Network 

for Image Data



Next step: Goal: Dog or Cat ?

1D array of features

Fully-connected NN 
can be useful.How?

How can we extract 
“features” from image?

Deep Learning



How about flattened image + MLP?

● For an input image of 100x100 pixels RGB 
image, how many weights does 1 neuron 
carry? 30,000 for just 1 neuron!

●  Two image of the same cat, but in a 
different position w.r.t. the frame. Would 
neuron react the same? No! Position 
information is encoded!

Next step:



CNNs introduce a limitation to MLP by forcing a neuron 
to look at only local, (approx.) translation invariant features

neuron

• Traverse over 2D space to process the whole input
• Locality and  translation-invariance

Still a linear transformation!
Weights=matrix, output=scalar

Analyze a fixed-size, local sub-matrix 
from the input.



Convolution 3x3
Stride 1, no padding

Convolution 3x3
Stride 1, padding 1



Goal: Dog or Cat ?



0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C 
weights

per neuron

⊗ dot product

Goal: Dog or Cat ?
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Nneurons make
N-fold

“feature map”

Goal: Dog or Cat ?

Neuron sum
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0 1 0
0 2 0
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Nneurons make
N-fold

“feature map”
Down

sample 

Goal: Dog or Cat ?
e.g) max pooling



0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C 
weights

per neuron

⊗ dot product

Nneurons make
N-fold

“feature map”
More 

Convolution
Down

sample 
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Goal: Dog or Cat ?

1D array of 
discriminants
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0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C 
weights

per neuron

⊗ dot product

Nneurons make
N-fold

“feature map”

Repeat

More 
Convolution

Down
sample 

1D array of 
discriminants

Loss

Weights update by 
back-propagation

Goal: Dog or Cat ?



Graph Neural Networks 

for Unstructured Data



Graph Neural Networks
CNNs for data that live (are projected) in images. 
Feature extraction by analyzing local neighbors defined by regular grids. But 
more in general, data is irregular with complex neighbor/relation definition.

A social network Citation/Reference Map



Graph Neural Networks
Graph operations can be encoded into matrix multiplication just 
like convolutions = can utilize parallel processors (e.g. GPUs)



Graph Neural Networks
Graph operations can be encoded into matrix multiplication just 
like convolutions = can utilize parallel processors (e.g. GPUs)

However it shouldn’t depend on an arbitrary ordering scheme. 
GNNs can exploit permutation invariance



Graph Neural Networks
Parts: “nodes”, “edges”, and the “graph” (as a whole)



Graph Neural Networks
Parts: “nodes”, “edges”, and the “graph” (as a whole)
Convolutions: extract “local features” from connected neighbors



Graph Neural Networks
Parts: “nodes”, “edges”, and the “graph” (as a whole)
Convolutions: extract “local features” from connected neighbors
Message Passing: repeated convolution propagates information



Tasks for GNNs

● Node classification/regression 

● Edge classification/regression 

● Graph classification/regression 


