
Machine Learning Basics
For SBN/2x2 ML Workshop

Kazuhiro Terao
SLAC National Accelerator Laboratory 1

Original image credit: xkcd

Machine Learning, Deep Learning, AI … what are they?

Machine Learning

Machine Learning
Machine Learning, Deep Learning, AI … what are they?

Artificial Intelligence

Machine Learning

Deep Learning

Artificial Intelligence
● A computer with intelligence

Machine Learning
● Process to generate an intelligent

algorithm from data.

Deep Learning
● ML methods that aim at complex

pipelines working on low-level data

Machine Learning
Turning data into an algorithm

Data
Learned

Algorithm

Learn

Learning Framework

Learning
Algorithm

Objective

Hypothesis
Set

Data Final
Hypothesis

How to machine learn?

1. Prepare data set.

2. Define a set of potential solutions
(hypothesis models).

3. Define the performance metric
(learning objectives).

4. Optimize using a learning
algorithm.

Data
In machine/statistical learning, we assume data is independently

sampled from identical distribution. Sometimes acronymed “i.i.d”.

● Assumption: present and future data
follow the same distribution.

○ The algorithms optimized using the
existing data can be used to “predict”
or “infer” things about the future data.

○ Inherent weakness:
■ Out-of-distribution
■ Distributional shift

Hypothesis Set

Algorithm = a numeric program with input and output

Popular choice to form a “set of candidate algorithm”: parametrization

Objective

Use the objective measure in order to choose the best hypothesis within
the set. Use the objective to guide the learning process. Typically this is to
minimize the error metric called “loss” or “risk”.

Objective = find

Learning Algorithm

Learning = choosing the best hypothesis within the set. Use the objective
to guide the learning process.

● Analytical solution (rare)

● Grid = discrete search (lots of compute)

● Iterative update (most typical)

Data: {yi} sampled from true underlying distribution

Hypothesis set:

Objective:

Learning:

Example: multivariate linear regression

 1
0

Example: neural network

Perceptron is a linear model and can be
visualized as a linear line (in n-dimension).

One can use the “sigmoid” function as the
activation function. In Statistics, this is
known as the “logistic regression” (or linear
binary classification)

Example: neural network

What if the data is not linearly separable?

Example: neural network

What if the data is not linearly separable?

Example: neural network

● Add a neuron

What if the data is not linearly separable?

Example: neural network

● Add a neuron
● Add a layer

The task became
linearized in the
new feature space

Multi-layer Perceptron (MLP)

More on Learning Algorithms

Goal: tune the parameters w and achieve

Minimize the loss iteratively:

called Gradient Descent (GD) where 𝜆 controls the rate of learning process.

Learning Algorithm: Gradient Descent (GD)

Learning Algorithm: Gradient Descent (GD)
Goal: tune the parameters w and achieve

Minimize the loss iteratively:

called Gradient Descent (GD) where 𝜆 controls the rate of learning process.

Too small Just right Too large

Goal: tune the parameters w and achieve … faster?

Mini-batch Stochastic GD (SGD) use a subset of data for gradient.

Learning Algorithm: Stochastic GD

Goal: tune the parameters w and achieve … faster?

Mini-batch Stochastic GD (SGD) use a subset of data for gradient.
1. Create a batch = random subset of data.
2. Compute the gradient for the batch and update the parameters.
Note: when data is always new (never seen before), called “online learning”

Learning Algorithm: Stochastic GD

Learning Algorithm: beyond vanilla SGD
Adaptive LR sets dynamic value based on the gradient magnitude, Momentum
learns from the history to avoid being trapped by oscillating loss values, and much
more research is done… a popular default choice is “Adam” optimizer.

Empirical Risk v.s. Bias

Expressivity of a Hypothesis Set

True solution

Best hypothesisHigh expressivity means that the
hypothesis set can approximate
many functions and more likely to
contain a good representation of the
true solution.

Model bias = loss @ best hypothesis

A sufficiently large neural network can become a “Universal
Approximation Function” (i.e. can model any function), which
makes neural network an interesting/popular model choice in ML.

Q: is there any con about a large model?

Statistical Learning

In order to learn, we must estimate the performance or minimize the
“risk” or “loss.” The true expectation loss is:

Assume: data is a stochastic sample.

Assume: data is a stochastic sample.

In order to learn, we must estimate the performance or minimize the
“risk” or “loss.” The true expectation loss is:

However, we only have data set (sample “s”) and have no access to p(s).
We can have an unbiased approximation, the empirical loss

Statistical Learning

Empirical Risk Minimization
Choose a hypothesis from the set such that it performs best for the
given dataset. The data size is critical.

Small data

Empirical Risk Minimization
Choose a hypothesis from the set such that it performs best for the
given dataset. The data size is critical.

Big data

The empirical loss is always worse
than the bias.

● Less expressive model = larger bias
● More complex model = larger variance

Bias-Variance trade off
The dataset size is finite and stochastically sampled. Within the same
hypothesis set, the “best solution” h* depends on a specific dataset.

Variance = the spread across {h*} among
different datasets.

Choosing the Model w/ Trade-Offs
Recall: we can only measure the empirical risk but …
● Want to guess the best hypothesis based on the empirical risk
● Want to measure the model “generalization” performance

Learning
Algorithm

Objective

Hypothesis
Set

Data

Select the
final

hypothesis

Measure the
model

performance

Choosing the Model w/ Trade-Offs
Split the data 3 ways: training, validation, and test datasets
● Validation set = use to choose/tune the model
● Test set = use to assess the model performance (bias estimate)

How to choose the final model
● Pick the best performing one (early stopping)
● Modify the hypothesis set (hyper-param. tuning)

Train
Val

Model
design Train Validate Test

Development Workflow

Deployment

Back to Neural Networks

Neural Network: Architecture Choice

Wide

Deep

OR

Universal Approximation Theorem

It can be shown that a MLP with single hidden layer is a universal
function approximator (can represent any function).

Why do we need a deep network?

Benefits of the depth

A neural network becomes exponentially more expressive with the
depth due to composition of features into higher level concepts.

Convolutional Neural Network

for Image Data

Next step: Goal: Dog or Cat ?

1D array of features

Fully-connected NN
can be useful.How?

How can we extract
“features” from image?

Deep Learning

How about flattened image + MLP?

● For an input image of 100x100 pixels RGB
image, how many weights does 1 neuron
carry? 30,000 for just 1 neuron!

● Two image of the same cat, but in a
different position w.r.t. the frame. Would
neuron react the same? No! Position
information is encoded!

Next step:

CNNs introduce a limitation to MLP by forcing a neuron
to look at only local, (approx.) translation invariant features

neuron

• Traverse over 2D space to process the whole input
• Locality and translation-invariance

Still a linear transformation!
Weights=matrix, output=scalar

Analyze a fixed-size, local sub-matrix
from the input.

Convolution 3x3
Stride 1, no padding

Convolution 3x3
Stride 1, padding 1

Goal: Dog or Cat ?

0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C
weights

per neuron

⊗ dot product

Goal: Dog or Cat ?

0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C
weights

per neuron

⊗ dot product

Nneurons make
N-fold

“feature map”

Goal: Dog or Cat ?

Neuron sum

0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C
weights

per neuron

⊗ dot product

“feature map”

Goal: Dog or Cat ?

0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C
weights

per neuron

⊗ dot product

Nneurons make
N-fold

“feature map”

Goal: Dog or Cat ?

0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C
weights

per neuron

⊗ dot product

Nneurons make
N-fold

“feature map”
Down

sample

Goal: Dog or Cat ?
e.g) max pooling

0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C
weights

per neuron

⊗ dot product

Nneurons make
N-fold

“feature map”
More

Convolution
Down

sample

Goal: Dog or Cat ?

0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C
weights

per neuron

⊗ dot product

Nneurons make
N-fold

“feature map”

Repeat

More
Convolution

Down
sample

Goal: Dog or Cat ?

1D array of
discriminants

0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C
weights

per neuron

⊗ dot product

Nneurons make
N-fold

“feature map”

Repeat

More
Convolution

Down
sample

1D array of
discriminants

Loss

Goal: Dog or Cat ?

0 1 0
0 2 0
0 1 0

Convolution
3 x 3 “kernel”

3 x 3 x C
weights

per neuron

⊗ dot product

Nneurons make
N-fold

“feature map”

Repeat

More
Convolution

Down
sample

1D array of
discriminants

Loss

Weights update by
back-propagation

Goal: Dog or Cat ?

Graph Neural Networks

for Unstructured Data

Graph Neural Networks
CNNs for data that live (are projected) in images.
Feature extraction by analyzing local neighbors defined by regular grids. But
more in general, data is irregular with complex neighbor/relation definition.

A social network Citation/Reference Map

Graph Neural Networks
Graph operations can be encoded into matrix multiplication just
like convolutions = can utilize parallel processors (e.g. GPUs)

Graph Neural Networks
Graph operations can be encoded into matrix multiplication just
like convolutions = can utilize parallel processors (e.g. GPUs)

However it shouldn’t depend on an arbitrary ordering scheme.
GNNs can exploit permutation invariance

Graph Neural Networks
Parts: “nodes”, “edges”, and the “graph” (as a whole)

Graph Neural Networks
Parts: “nodes”, “edges”, and the “graph” (as a whole)
Convolutions: extract “local features” from connected neighbors

Graph Neural Networks
Parts: “nodes”, “edges”, and the “graph” (as a whole)
Convolutions: extract “local features” from connected neighbors
Message Passing: repeated convolution propagates information

Tasks for GNNs

● Node classification/regression

● Edge classification/regression

● Graph classification/regression

