
Action! Lists
Sean Middleditch

Who I Am

Sean Middleditch

DigiPen RTIS Senior
Subsonic, SONAR, Core

http://seanmiddleditch.com

http://seanmiddleditch.com

Just what are Action Lists?

Introduction

You've Seen Them Already

lawl itz an
action listz!!!~!

"Action" ... "List"

They're lists...

... of actions!

Not Really a List

Basic action "lists" are actually queues (FIFO)

They contain an ordered list of actions

Each is called in sequence

Do X, then do Y, then do Z

Action Queue Lists

Gather Ingredients

Cook Meal

Eat Awesome Food

Executing Actions

Actions are executable

They can take more than one frame to
complete

Action::Update() method is called every frame
until the action indicates that it is complete

Only the first action is updated

Simple Action Interface

Update() sets IsFinished to true when complete

// base action interface
class Action
{
public:
 Action() : IsFinished(false) {}
 virtual ~Action() {}

 virtual void Update() = 0;

 bool IsFinished;
};

Simple WalkTo Action
// walk to a point
class WalkTo
{
public:
 WalkTo(const vec3& position, float speed) :
 Position(position), Speed(speed) {}

 virtual void Update()
 {
 if (AreWeThereYet(Position))
 IsFinished = true;
 else
 MoveTowards(Position, Speed);
 }

 vec3 Position;
 float Speed;
};

Simple ActionList Loop
// in header
class ActionList
{
public:
 void Update();
 void PushAction(Action* action) { Actions.push(action); }

 std::queue<Action*> Actions;
};

// in code file
void ActionList::Update()
{
 if (!Actions.empty())
 {
 Actions.front()->Update();
 if (Actions.front()->IsFinished)
 Actions.pop();
 }
}

Can he walk and wave at the same time?

Parallel Actions

a.k.a. Synchronous or Asynchronous

Blocking means that one action stops the
second from running

Non-blocking means that the first action allows
the second to run simultaneously

Blocking vs Non-Blocking

Mixing Blocking & Non-Blocking

The standard action list has only blocking
actions

Allowing a mix of blocking and non-blocking
gives a lot of flexibility

Complex behaviors can be made by combining
blocking and non-blocking actions

Simple Blocking Action Interface
// base action interface
class Action
{
public:
 Action(bool blocking) : IsBlocking(blocking), IsFinished(false) {}
 virtual ~Action() {}

 virtual void OnUpdate() = 0;

 bool IsBlocking;
 bool IsFinished;
};

Action can be configured as Blocking or
Non-Blocking at runtime

Simple Blocking WalkTo Action
// walk to a point
class WalkTo
{
public:
 WalkTo(bool blocking, const vec3& position, float speed) :
 Action(blocking), Position(position), Speed(speed) {}

 virtual void OnUpdate()
 {
 if (AreWeThereYet(Position))
 IsFinished = true;
 else
 MoveTowards(Position, Speed);
 }

 vec3 Position;
 float Speed;
};

Simple Blocking ActionList Loop

Execute each action until a blocking action
runs, remove completed actions from your
action list

std::vector<Action*>::iterator iter = m_Actions.begin();
bool blocked = false;

while (!blocked && iter != m_Actions.end())
{
 Action* action = *iter;

 action->OnUpdate();

 blocked = action->IsBlocking;

 if (action->IsFinished)
 iter = m_Actions.erase(iter);
 else
 ++iter;
}

Visualizing as Parallel Queues

Rotate

WaveAnimation

WalkTo

OpenDoor

non-blocking

actions

blocking actions

Sync Action

What if you want three non-blocking actions to
run, and then one blocking action?

Create a Sync action that is Blocking

It sets IsFinished to true when it is the first
action in the list

Simple Blocking WalkTo Action
// sync action
class Sync : public Action
{
public:
 virtual void Update()
 {
 if (OwningActionList.Actions.front() == this)
 IsFinished = true;
 }
};

Good time to note: use better abstraction,
private members, accessor functions, name
members with m_ prefix, etc.

Slides are just saving space

Sync Action Diagram

Wave

ReadyWeapon

Reload

Rotate

RunTo

Sync

Other Considerations

You might give Action a built-in delay

Or a built-in time to finish

Utility functions like IsEmpty(), IsFirst(), etc.

DidRunAlready flag

a.k.a. bitmasks

Lanes

Improving on Simple Blocking

Simple blocking vs non-blocking is limited

Sync action helps, but still limited

Difficult to combine actions in interesting ways

Lanes to the Rescue

Actions are assigned to one or more Lanes

Only one Action in any Lane can ever run

If any Lane an Action is in has been blocked,
the Action is blocked

Actions run in order as usual, but blocked
Actions may be between two unblocked actions

Selective Blocking via Bitmasks

Each Action has a bitmask, termed Lanes

The ActionList keeps a cummulative bitmask
during each update loop (bitwise OR the lanes
of the executed Actions)

If an Action's Lanes bitmask intersets the
cummulative bitmask (bitwise AND is
non-zero), the Action is skipped/blocked

Simple Blocking WalkTo Action
class Action
{
public:
 Action(bool blocking, int lanes) : Lanes(lanes), IsBlocking(blocking),
 IsFinished(false) {}

 virtual void Update() = 0;

 int Lanes;
 bool IsBlocking;
 bool IsFinished;
}

Setting Lanes in constructor makes it easy for
derived classes to configure defaults, or allow
users to override the lanes on a per-action
basis

Simple Blocking WalkTo Action
std::vector<Action*>::iterator iter = m_Actions.begin();
int mask = 0;

while (iter != m_Actions.end())
{
 Action* action = *iter;

 if (0 == (mask & action->Lanes))
 {
 if (action->IsBlocking)
 mask |= action->Lanes;

 action->Update();

 if (action->IsFinished)
 iter = m_Actions.erase(iter);
 else
 ++iter;
 }
 else
 ++iter;
}

Can bad graphics make this clearer?

Example with Lanes

Example with Lanes

Investigate

Patrol

Mov
em

en
t

Anim
ati

on
s

Beh
av

ior
s

WalkTo

FindPath

Example with Lanes

Investigate

Patrol

Mov
em

en
t

Anim
ati

on
s

Beh
av

ior
s

WalkTo blocks all movement and animationsWalkTo

FindPath

WalkTo blocks all movement and animations

Example with Lanes

WalkTo

FindPath

Investigate

Patrol

Mov
em

en
t

Anim
ati

on
s

Beh
av

ior
s

WalkTo blocks all movement and animations

FindPath is blocked

Example with Lanes

WalkTo

FindPath

Investigate

Patrol

Mov
em

en
t

Anim
ati

on
s

Beh
av

ior
s

WalkTo blocks all movement and animations

FindPath is blocked

Investigate runs, but isn't blocking

Example with Lanes

WalkTo

FindPath

Investigate

Patrol

Mov
em

en
t

Anim
ati

on
s

Beh
av

ior
s

WalkTo blocks all movement and animations

FindPath is blocked by WalkTo

Investigate runs, but isn't blocking

Patrol is blocked by WalkTo

Example with Lanes

WalkTo

FindPath

Investigate

Patrol

Mov
em

en
t

Anim
ati

on
s

Beh
av

ior
s

WalkTo blocks all movement and animations

FindPath is blocked by WalkTo

Investigate runs, but isn't blocking

Patrol is blocked by WalkTo

Improving on Lanes

Two separate bitmasks

One for "what I will block"

Another for "what I am blocked by"

Yo dawg, I heard you like action lists...

Hierarchical Action! Lists

Feudal Action!

Each game object has a primary ActionList

Some Actions may have their own complex
behavior and contain an ActionList

The embedded ActionLists are blocked if their
parent Action is blocked, and run otherwise

Simple Blocking WalkTo Action
class HierarchicalAction : public Action
{
public:
 virtual void Update()
 {
 MyActionList.Update();
 IsFinished = MyActionList.IsEmpty();
 }

 ActionList MyActionList;
};

Naturally, the HierarchicalAction could have its
own specialized logic in addition to the
embedded ActionList

Miscellania that may or may not be useful

A Few More Suggestions

Simplified Lanes

Use a single Lane per Action

Just a number

Calculate bitmask using shifts

int mask = 1 << action->Lane;

Parent/Child Relationships

Hierarchical Actions in one ActionList

When an Action spawns more Actions (e.g.,
PathTo generates a series of MoveTo's), the
child Action gets a pointer back to parent

Allows removing an Action and all its children at
once, useful for complex cancellable Actions

Breaking the FIFO Mold

One of the more useful features

Allow pushing Actions to the front or back of the
list

Allow inserting Action before or after another
Action

Block and Unblock Events

Add Blocked() and Unblocked() methods

Some Actions may have special behavior to
suspend or resume when they get blocked

Especially useful when combined with the
previous suggestion

Paused Event

Allow setting an Acton to a paused state

It does not run, and does not block anything
else

Can have Paused()/Unpaused() events too

Combine with Blocked() event and Parent/Child
Actions for complex systems (parent is blocked,
so all children get paused)

Message Delivery

Super important feature for most usecases

Actions need to know what's going

Let them observe messages, or deliver any
messages delivered to a game object to its
ActionList as well

OnMessage() method or similar

Managing the complexity

Debugging Action Lists

Debugging

Every Action has state imposed by the system:

Is blocked, is blocking, is paused, lanes,
parent, position in list, prev/next actions, etc.

Each Action has its own specialized state:

WalkTo's target position, PlayAnimation's
animation, etc.

Debugging

Actions have derived state:

Who is blocking me, who am I blocking, who
are my children, etc.

Each Action can have optional debugging state:

Time Action has been running

Visualization

Even with ugly text-only output, this can be
immensely helpful in debugging what an
ActionList is doing and what the problem is

#1 WalkTo (0x8030) {blocking, #2, #3} position=4.5,1.7

#2 WalkTo (0x8030) [blocked, #1] {blocking} position=7.2,2.1

#3 PickUp (0x2030) [blocked, #1] object=Longsword

Using action lists for AI behavior

Behavioral Composition
1.0

Action Lists in AI

Often used for managing AI-chosen actions

Rarely used for managing the AI itself

AI decides to path to a location, pushes the
WalkTo (or PathTo) actions to the ActionList

AI Architecture

AI is often implemented as FSM (Finite State
Machine), which are inflexible, difficult to write,
difficult to edit for designers, and difficult to
debug

Advanced decision making AI architectures
(Goal Planning, Behavior Trees, etc.) are very
flexible, but still difficult to write, difficult to edit
for designers, and difficult to debug

AI Wishlist

Minimal amount of architecture to write1

2

3

4

Easy to build new AI (composable)

Flexible enough for our needs

Good debugging tools

AI Wishlist in Action Lists

ActionList already written1

2

3

4

Compose individual Behavior Actions

Flexibility with Lanes, Parent/Child,
Blocked/Unblocked/Paused/Unpaused
Events

ActionList is easily debuggable

Behaviors

Behaviors are just Actions

Behaviors are never finished

Active Behaviors are blocking

Prioritized by importance

Simple Behavior List

ChasePlayer

SearchForPlayer

InvestigateSound

Patrol

Simple Behavior List Part Deux

ChasePlayer is active when player is visible

SearchForPlayer is active when player is lost

InvestigateSound is active when hearing noise

Patrol is always active

Simple Behavior List Part Trois

If the player becomes visible, ChasePlayer
becomes active and sets its IsBlocking flag to
true

No other Behaviors further down the list run
while blocked

When the player is lost, ChasePlayer
deactivates, but SearchForPlayer activates

Simple Behavior List Part Quatre

SearchForPlayer deactivates on its own after
several seconds

Patrol is always active, but it's at the bottom of
the list, so it only runs when nothing else is
going on

New variations of the enemy can be created by
adding, removing, or reordering Behaviors

They're like duct tape

More Action List Uses

Graphics

Action lists can be used for post-processing
chains

They can be used for animation queues

UI elements can be animated, sequences like
"shake screen" or "fade to black" can be in a
queue, etc.

Game State Manager

Each game state is an Action

ActionList is used to manage states

Can push/pop states like PauseScreen or
OptionsScreen

Use messages, Blocked/Unblocked,
Paused/Unpaused states to allow overlays

Scripting...?

Very poor man's scripting for traps or puzzles

Inflexible but very easy to edit

Each Action waits for a specific trigger to
unblock itself, final Action opens door or pit trap

Le Questions

