DEEP LEARNING FOR VISUAL TRACKING
F4B305
Agustin Picard
Ricardo Andreasen
Tomas Volker
Amadou Agne
Gautier Cosne
Chayan Toufan Tabrizi
SOMMAIRE
5.1 GOTURN IMPLEMENTATION
5.2 YOLO IMPLEMENTATION
1 . INTRODUCTION
DEEP LEARNING FOR VISUAL TRACKING
3
21/01/2018
Image
CNN Regression
Coordinates of the bounding box
2 . CONVOLUTIONAL NEURAL NETWORK
DEEP LEARNING FOR VISUAL TRACKING
4
21/01/2018
Classic Neural Network | Convolutional Neural Network |
Flattening Image : Loss of the spatial aspect | Feature Map |
Computationally expensive: 512∗512∗3∗Neurons weights | Convolution & Pooling |
3 . GOTURN*
DEEP LEARNING FOR VISUAL TRACKING
5
21/01/2018
Previous Frame
Current Frame
What to track
Search Region
C,w,h
C,𝜆*w,𝜆*h
5 first Convolutional Layers of CaffeNet
Fully-Connected� Layers
Predicted Location of target within search region
* Generic Object Tracking Using Regression Network
4. YOLO*
DEEP LEARNING FOR VISUAL TRACKING
6
21/01/2018
* You Only Look Once
5. APPLICATION TO OUR PROJECT
DEEP LEARNING FOR VISUAL TRACKING
7
21/01/2018
5.1 GOTURN IMPLEMENTATION
Pre-trained:
5. APPLICATION TO OUR PROJECT
DEEP LEARNING FOR VISUAL TRACKING
8
21/01/2018
5.2 GOTURN IMPLEMENTATION - CONTINUED
5. APPLICATION TO OUR PROJECT
DEEP LEARNING FOR VISUAL TRACKING
9
21/01/2018
5.3 GOTURN IMPLEMENTATION - CONTINUED
5. APPLICATION TO OUR PROJECT
DEEP LEARNING FOR VISUAL TRACKING
10
21/01/2018
5.4 GOTURN IMPLEMENTATION - CONTINUED
5. APPLICATION TO OUR PROJECT
DEEP LEARNING FOR VISUAL TRACKING
11
21/01/2018
5.2 YOLO IMPLEMENTATION
Nearest box to the previous one
Frame t predicted
(Ground truth for t=0)
Frame t+1 original
Threshold
YOLO9000 Object Detection
Frame t+1 predicted
5. APPLICATION TO OUR PROJECT
DEEP LEARNING FOR VISUAL TRACKING
12
21/01/2018
5.2 YOLO IMPLEMENTATION - CONTINUED
5. APPLICATION TO OUR PROJECT
DEEP LEARNING FOR VISUAL TRACKING
13
21/01/2018
5.2 YOLO IMPLEMENTATION - CONTINUED
5. APPLICATION TO OUR PROJECT
DEEP LEARNING FOR VISUAL TRACKING
14
21/01/2018
5.2 YOLO IMPLEMENTATION - CONTINUED
6. RESULTS AND CONCLUSION
DEEP LEARNING FOR VISUAL TRACKING
15
21/01/2018
SEQUENCE | YOLO Mean Centroid Distance | GOTURN Mean Centroid Distance | GOTURN Mean IOU |
Bear | 6.5 | 19.8 ; 20 | 0.47 |
Octopus | 32 | 36 ; 131.76 | 0.073 |
Fish | 17 | 3 ; 2.57 | 0.66 |
METHOD | PROS | CONS |
GOTURN |
|
|
YOLO |
|
|
6. RESULTS AND CONCLUSION
DEEP LEARNING FOR VISUAL TRACKING
16
21/01/2018
SEQUENCE | YOLO Mean Centroid Distance | GOTURN Mean Centroid Distance | GOTURN Mean IOU |
Bear | 6.5 | 19.8 ; 20 | 0.47 |
Octopus | 32 | 36 ; 131.76 | 0.073 |
Fish | 17 | 3 ; 2.57 | 0.66 |
METHOD | PROS | CONS |
GOTURN |
|
|
YOLO |
|
|
6. RESULTS AND CONCLUSION
DEEP LEARNING FOR VISUAL TRACKING
17
21/01/2018
SEQUENCE | YOLO Mean Centroid Distance | GOTURN Mean Centroid Distance | GOTURN Mean IOU |
Bear | 6.5 | 19.8 ; 20 | 0.47 |
Octopus | 32 | 36 ; 131.76 | 0.073 |
Fish | 17 | 3 ; 2.57 | 0.66 |
METHOD | PROS | CONS |
GOTURN |
|
|
YOLO |
|
|
6. RESULTS AND CONCLUSION
DEEP LEARNING FOR VISUAL TRACKING
18
21/01/2018
SEQUENCE | YOLO Mean Centroid Distance | GOTURN Mean Centroid Distance | GOTURN Mean IOU |
Bear | 6.5 | 19.8 ; 20 | 0.47 |
Octopus | 32 | 36 ; 131.76 | 0.073 |
Fish | 17 | 3 ; 2.57 | 0.66 |
METHOD | PROS | CONS |
GOTURN |
|
|
YOLO |
|
|
6. RESULTS AND CONCLUSION
DEEP LEARNING FOR VISUAL TRACKING
19
21/01/2018
SEQUENCE | YOLO Mean Centroid Distance | GOTURN Mean Centroid Distance | GOTURN Mean IOU |
Bear | 6.5 | 19.8 ; 20 | 0.47 |
Octopus | 32 | 36 ; 131.76 | 0.073 |
Fish | 17 | 3 ; 2.57 | 0.66 |
METHOD | PROS | CONS |
GOTURN |
|
|
YOLO |
|
|
6. RESTITUTION CHALLENGE
20