
CMSC389E:
Digital Logic Design Through Minecraft

Fall 2020
Akilesh Praveen

Logic Gates



Administrivia
● Install & Setup 389E Minecraft

○ Installer coming out very soon
○ For help w/ installation, send a message on Discord

● Turn in Project 0 on ELMS (will open on Monday)

● Keep checking the course website! (will be updated tonight) 
(http://www.cs.umd.edu/class/fall2020/cmsc389E/) 

● Special Setup & Installation Friday Happy Hour! (alcohol consumption not recommended)
○ Aki will be available on Discord today 3PM-5PM (and this weekend with 

appointment) to assist with installations

http://www.cs.umd.edu/class/fall2020/cmsc389E/


Announcements
● Project 1

○ Conceptual knowledge in today’s lecture + online 
textbook

○ Project spec will be released on ELMS and course 
website tonight / Saturday



Inputs & Outputs



Inputs & Outputs
● The basic logic gates make up all of our circuits

○ AND, OR, NOT, XOR

● More advanced gates are just combinations of these gates

○ (NOR, XNOR, etc.)

● All require two inputs and produce one output (NOT being 

the exception)



Inputs & Outputs
● Logic gates = absolute most basic constructs of the 

redstone circuits we will be building in this class

● As you can imagine, there are fairly easy ways to represent 

those using Minecraft’s built-in redstone mechanics

READ: Digital Logic & Comp Arch in Minecraft, C1.3



Inputs & Outputs
● How can we take our understanding of logic gates and 

translate it into Redstone?

● Go step by step, making clear connections with redstone 

concepts along the way



Inputs & Outputs
● Input for a logic gate is composed of 1 

or 2 values, both of which can be either 

True or False

● Let’s represent these inputs as 

Redstone wires; a wire with current is 

True, a wire without is False

“Off”, or False



Inputs & Outputs
● Input for a logic gate is composed of 1 

or 2 values, both of which can be either 

True or False

● Let’s represent these inputs as 

Redstone wires; a wire with current is 

True, a wire without is False

“On”, or True



Inputs & Outputs
● Q: Can we think of outputs in the same way?

● A: Yes, we can!



Inputs & Outputs
● Output can be represented by a single 

Redstone wire coming out of our logic 

gate.

● If the wire carries current, it has a state 

of True. If it does not, it has a state of 

False. 

“Off”, or False

“On”, or True



Inputs & Outputs
● Here’s what we have so far- a way to represent input and 

output for our logic gates using Redstone wires.

???



Basic Logic Gates



The Logic Gates
● Now, let’s figure out what goes into the mystery box when 

we want to build NOT, AND, OR and XOR.

???



The Logic Gates
● Live demos- NOT, AND, OR, XOR

READ: Digital Logic & Comp Arch in Minecraft, 2.1, 2.2, 2.3, 2.4

???

https://akilesh.xyz/digital-logic-computer-architecture-minecraft/book/u2c1.html
https://akilesh.xyz/digital-logic-computer-architecture-minecraft/book/u2c2.html
https://akilesh.xyz/digital-logic-computer-architecture-minecraft/book/u2c3.html
https://akilesh.xyz/digital-logic-computer-architecture-minecraft/book/u2c4.html


The Logic Gates
● If you’ve taken 250 already, this is stuff you should already 

know

● If you have yet to catch up on 250 or need a refresher:

○ Detailed overview of the logic gates can be found in the 

online textbook.

○ Ashwath is also a 250 TA :)



The Logic Gates
● Nuances to remember

○ A redstone torch, placed correctly, will invert current

○ Repeaters will extend current and act as diodes

■ Useful to prevent backflow!

○ You are welcome to use comparators, but it is not 

encouraged



Logical Complements



Logical Complements
● Let’s talk about logical complements

● Occasionally, we have a gate or circuit that produces the 

exact opposite of what we want

● In this case, use the logical complement of whatever gate 

or circuit you’ve got

● Using ‘dot’ notation is less cumbersome sometimes

READ: Digital Logic & Comp Arch in Minecraft, C2.5



An Exercise
● Let’s make your 250 TAs proud

● Construct an XOR gate using only ORs, ANDs, and NOTs

○ Try to be as efficient as possible. In real life, circuits are 

made by hand, and every piece has a cost!

○ More gates = more built time, so learn to think 

efficiently?



An Exercise
● Why is this so important?



An Exercise
● Why is this so important?

● Some gates can be built using other gates



Applications In 
Computing



The NAND Gate’s Importance
● Let’s talk about the NAND Gate

● They are the most commonly found gates in computers 

(NAND Flash?)

● Why is that?



The NAND Gate’s Importance
● Let’s talk about the NAND Gate

● They are the most commonly found gates in computers 

(NAND Flash?)

● Why is that?

● The NAND gate is ‘functionally complete’

○ So is the NOR gate!



The NAND Gate’s Importance



The NAND Gate’s Importance



The NAND Gate’s Importance



The NAND Gate’s Importance
● What’s the big deal with NAND being functionally complete? 

○ If a gate is functionally complete, all other gates can be 

constructed using it

○ In CMOS (a common circuit fabrication process), NAND 

is smaller and faster than a NOR gate.



The NAND Gate’s Importance
● TL;DR: Thanks to already set industry precedents + the 

initial ease to manufacture them, NAND gates are the pick 

over NOR gates for the universal gate that engineers used 

to build other gates, and eventually other full sized circuits.

READ: Digital Logic & Comp Arch in Minecraft, C2.6



Applications in
Minecraft



Why is this big for us?
● We are able to create a NAND gate in Minecraft!



Why is this big for us?
● We are able to create a NAND gate in Minecraft!

○ READ: We are able to create a fully functional computer 

in Minecraft!

● Provided that we can create a NAND gate in Minecraft, and 

knowing that a NAND gate can be used to build every other 

gate, we have thusly proven that we can build a computer 

within Minecraft! Q.E.D.



NAND for everything!
● Does this mean we will build everything using NAND gates 

in Minecraft?



NAND for everything!
● Does this mean we will build everything using NAND gates 

in Minecraft?

○ No, absolutely not. That’s ridiculous



NAND for everything!
● Does this mean we will build everything using NAND gates 

in Minecraft?

○ No, absolutely not. That’s ridiculous

● It’s important to notice the subtle, yet key differences 

between Minecraft and real life (in terms of digital logic and 

otherwise).



Efficient Circuit Design



Efficiency
● We want to create circuits that, given input, produce the 

output that we want

○ With as few components as possible

● When discussing boolean logic, we should think about the 

logic rules that come with it.



Efficiency
● Digital Logic Circuits <-> Boolean Predicates

● We can use logic rules to perform simplifications on our 

circuits when needed 

(http://www.cs.umd.edu/class/spring2019/cmsc250-020X/fi

les/logic-laws.pdf)

● Now, you’ll give it a try

http://www.cs.umd.edu/class/spring2019/cmsc250-020X/files/logic-laws.pdf
http://www.cs.umd.edu/class/spring2019/cmsc250-020X/files/logic-laws.pdf


Efficiency
● Suppose you are given the following circuit. How would you 

go about simplifying this?



Efficiency
● Write it out using boolean logic:

○ (A ⋀ B) ⋁ (B ⋀ C)



Efficiency
● Apply the distributive law to get the following: (simpler!)

○ B ⋀ (A ⋁ C)



Key Takeaways
● Knowing the basics of boolean logic opens the doors for us 

to make more advanced circuits!

● Understanding functional completeness gives us the 

theoretical knowledge to know just how computers can be 

created in Minecraft



Key Takeaways
● Boolean logic rules are essential to designing circuits in the 

most efficient way possible

○ Saving time, money and materials in the real world

○ Saving us from carpal tunnel in Minecraft



Project 1


