
Go optimizations in
VictoriaMetrics

Aliaksandr Valialkin, CTO at VictoriaMetrics

About me
● https://github.com/valyala
● I’m fond of Go and performance optimizations
● Fasthttp author
● VictoriaMetrics core developer

https://github.com/valyala

Agenda
● What is VictoriaMetrics?
● What is time series?
● What does time series database do?
● Time series database architecture
● Inverted index implementations, issues and optimizations
● Specialized bitset implementation in Go

What is VictoriaMetrics?

What is VictoriaMetrics?
● Time series database

What is VictoriaMetrics?
● Time series database
● It is based on architecture ideas from ClickHouse

○ MergeTree data structure
○ Parallel computations on all the CPU cores
○ Process data in blocks that fit CPU cache

What is VictoriaMetrics?
● Time series database
● It is based on architecture ideas from ClickHouse

○ MergeTree data structure
○ Parallel computations on all the CPU cores
○ Process data in blocks that fit CPU cache

● Provides the best on-disk data compression

What is VictoriaMetrics?
● Time series database
● It is based on architecture ideas from ClickHouse

○ MergeTree data structure
○ Parallel computations on all the CPU cores
○ Process data in blocks that fit CPU cache

● Provides the best on-disk data compression
● Scales vertically and horizontally

What is VictoriaMetrics?
● Time series database
● It is based on architecture ideas from ClickHouse

○ MergeTree data structure
○ Parallel computations on all the CPU cores
○ Process data in blocks that fit CPU cache

● Provides the best on-disk data compression
● Scales vertically and horizontally
● Fast

What is VictoriaMetrics?
● Time series database
● It is based on architecture ideas from ClickHouse

○ MergeTree data structure
○ Parallel computations on all the CPU cores
○ Process data in blocks that fit CPU cache

● Provides the best on-disk data compression
● Scales vertically and horizontally
● Fast
● Written in Go

What is time series?

What is time series?
● A series of (timestamp, value) pairs

What is time series?
● A series of (timestamp, value) pairs
● Pairs are ordered by timestamp

What is time series?
● A series of (timestamp, value) pairs
● Pairs are ordered by timestamp
● Value is float64

What is time series?
● A series of (timestamp, value) pairs
● Pairs are ordered by timestamp
● Value is float64
● Each time series is uniquely identified by a key

What is time series?
● A series of (timestamp, value) pairs
● Pairs are ordered by timestamp
● Value is float64
● Each time series is uniquely identified by a key
● A key contains non-empty set of (label=value) pairs

What is time series?
● A series of (timestamp, value) pairs
● Pairs are ordered by timestamp
● Value is float64
● Each time series is uniquely identified by a key
● A key contains non-empty set of (label=value) pairs
● Example:

{__name__=”cpu_usage”, instance=”my-server”, datacenter=”us-east”}

(t1, 10), (t2, 20), (t3, 12), …. (tN, 15)

Time series applications

Time series applications
● DevOps - CPU, RAM, network, rps, errors count

Time series applications
● DevOps - CPU, RAM, network, rps, errors count
● IoT - temperature, pressure, geo coordinates

Time series applications
● DevOps - CPU, RAM, network, rps, errors count
● IoT - temperature, pressure, geo coordinates
● Finance - stock prices

Time series applications
● DevOps - CPU, RAM, network, rps, errors count
● IoT - temperature, pressure, geo coordinates
● Finance - stock prices
● Industrial monitoring - sensors in wind turbines, factories, robots

Time series applications
● DevOps - CPU, RAM, network, rps, errors count
● IoT - temperature, pressure, geo coordinates
● Finance - stock prices
● Industrial monitoring - sensors in wind turbines, factories, robots
● Cars - engine health, tire pressure, speed, distance

Time series applications
● DevOps - CPU, RAM, network, rps, errors count
● IoT - temperature, pressure, geo coordinates
● Finance - stock prices
● Industrial monitoring - sensors in wind turbines, factories, robots
● Cars - engine health, tire pressure, speed, distance
● Aircraft and aerospace - black box, spaceship telemetry

Time series applications
● DevOps - CPU, RAM, network, rps, errors count
● IoT - temperature, pressure, geo coordinates
● Finance - stock prices
● Industrial monitoring - sensors in wind turbines, factories, robots
● Cars - engine health, tire pressure, speed, distance
● Aircraft and aerospace - black box, spaceship telemetry
● Healthcare - cardiogram, blood pressure

What does time series database do?

What does time series database do?
● Stores (timestamp, value) data points under the given key

What does time series database do?
● Stores (timestamp, value) data points under the given key
● Provides an API for querying time series:

What does time series database do?
● Stores (timestamp, value) data points under the given key
● Provides an API for querying time series:

○ By key

What does time series database do?
● Stores (timestamp, value) data points under the given key
● Provides an API for querying time series:

○ By key
○ By (label=value) pair

What does time series database do?
● Stores (timestamp, value) data points under the given key
● Provides an API for querying time series:

○ By key
○ By (label=value) pair
○ By a set of (label=value) pairs

What does time series database do?
● Stores (timestamp, value) data points under the given key
● Provides an API for querying time series:

○ By key
○ By (label=value) pair
○ By a set of (label=value) pairs
○ By a set of (label=<regexp>) pairs

What does time series database do?
● Stores (timestamp, value) data points under the given key
● Provides an API for querying time series:

○ By key
○ By (label=value) pair
○ By a set of (label=value) pairs
○ By a set of (label=<regexp>) pairs
○ Example: {__name__=”cpu_usage”, datacenter=~”us-.+”} would select all the cpu_usage

time series for all the datacenters in US

What does time series database do?
● Stores (timestamp, value) data points under the given key
● Provides an API for querying time series:

○ By key
○ By (label=value) pair
○ By a set of (label=value) pairs
○ By a set of (label=<regexp>) pairs
○ Example: {__name__=”cpu_usage”, datacenter=~”us-.+”} would select all the cpu_usage

time series for all the datacenters in US

● Provides query language for time series data: PromQL, InfluxQL, Flux, Q

Time series database architecture

Inverted indexData points

2. timeseries_id: (timestamp, value) 1. {label=value} set

insert

4. a set of timeseries_ids 3. {label=value} filters

select

Query life

Query life
● Select all the timeseries_ids from inverted index that match the given set of

(label=value or regexp) pairs

Query life
● Select all the timeseries_ids from inverted index that match the given set of

(label=value or regexp) pairs
● Select all the data points for the given timeseries_ids set in the given time

range

Query life
● Select all the timeseries_ids from inverted index that match the given set of

(label=value or regexp) pairs
● Select all the data points for the given timeseries_ids set in the given time

range
● Perform additional processing for the selected data points

Inverted index

Inverted index
● A (K: V) map

Inverted index
● A (K: V) map
● K is (label=value) pair

Inverted index
● A (K: V) map
● K is (label=value) pair
● V is a set of timeseries_ids for all the time series with the given (label=value)

pair

Inverted index
● A (K: V) map
● K is (label=value) pair
● V is a set of timeseries_ids for all the time series with the given (label=value)

pair
● Quickly finds all the timeseries_ids for the given (label=value) pair

Inverted index
● A (K: V) map
● K is (label=value) pair
● V is a set of timeseries_ids for all the time series with the given (label=value)

pair
● Quickly finds all the timeseries_ids for the given (label=value) pair
● Quickly finds all the timeseries_ids for the given set of (label=value) pairs

Inverted index implementations

Inverted index: naive implementation
var invertedIndex = make(map[string][]int)

func getMetricIDs(labelValues []string) []int {
 metricIDs := invertedIndex[labelValue[0]]
 for _, labelValue := range labelValues[1:] {
 newMetricIDs := invertedIndex[labelValue]
 metricIDs = intersectInts(metricIDs, newMetricIDs)
 }
 return metricIDs
}

Inverted index: naive implementation issues

Inverted index: naive implementation issues
● Missing persistence - data is lost on process restart

Inverted index: naive implementation issues
● Missing persistence - data is lost on process restart
● Inverted index must fit RAM - doesn’t scale to big number of time series

Inverted index: LevelDB
● Store {(label=value): timeseries_id} rows in LevelDB
● Extract all the timeseries_ids from all the rows for the given (label=value) pair

Inverted index: LevelDB
var invertedIndex *LevelDB

func getMetricIDs(labelValues []string) []int {
 metricIDs := invertedIndex.GetValues(labelValue[0])
 for _, labelValue := range labelValues[1:] {
 newMetricIDs := invertedIndex.GetValues(labelValue)
 metricIDs = intersectInts(metricIDs, newMetricIDs)
 }
 return metricIDs
}

Inverted index: LevelDB issues

Inverted index: LevelDB issues
● Slower than the naive implementation

Inverted index: LevelDB issues
● Slower than the naive implementation
● Cgo overhead for LevelDB and RocksDB

Inverted index: mergeset

Inverted index: mergeset
● Based on MergeTree data structure from ClickHouse

Inverted index: mergeset
● Based on MergeTree data structure from ClickHouse
● Optimized for fast inverted index lookups in VictoriaMetrics

Inverted index: mergeset
● Based on MergeTree data structure from ClickHouse
● Optimized for fast inverted index lookups in VictoriaMetrics
● Written in pure Go

Inverted index: mergeset
● Based on MergeTree data structure from ClickHouse
● Optimized for fast inverted index lookups in VictoriaMetrics
● Written in pure Go
● The API is similar to LevelDB or RocksDB

Inverted index: production issues
● High churn rate

Inverted index: production issues
● High churn rate
● High number of time series matching the given (label=value) pair (hundreds of

millions)

Inverted index: production issues
● High churn rate
● High number of time series matching the given (label=value) pair (hundreds of

millions)
● Matching (label=<regexp>)

High churn rate

High churn rate
● Certain labels are constantly changed

High churn rate
● Certain labels are constantly changed
● For instance, {deployment_id=”<deployment_id>”} in Kubernetes

High churn rate
● Certain labels are constantly changed
● For instance, {deployment_id=”<deployment_id>”} in Kubernetes
● Each deployment starts new set of time series

High churn rate
● Certain labels are constantly changed
● For instance, {deployment_id=”<deployment_id>”} in Kubernetes
● Each deployment starts new set of time series
● The number of {datacenter=”us-east”} time series grows over time

High churn rate
● Certain labels are constantly changed
● For instance, {deployment_id=”<deployment_id>”} in Kubernetes
● Each deployment starts new set of time series
● The number of {datacenter=”us-east”} time series grows over time
● But the number of {datacenter=”us-east”} time series for the last day

remains constant

High churn rate
● Certain labels are constantly changed
● For instance, {deployment_id=”<deployment_id>”} in Kubernetes
● Each deployment starts new set of time series
● The number of {datacenter=”us-east”} time series grows over time
● But the number of {datacenter=”us-east”} time series for the last day

remains constant
● How to provide constant speed for selecting {datacenter=”us-east”} time

series for the last day?

High churn rate solutions

Partition inverted index by time
● Pros:

○ Simple
○ Fast

● Cons:
○ duplicates inverted index data for long-living time series

Partition 1 Partition 2 Partition 3 Partition N

...

time

Per-day timeseries_ids sets for active time series
● Pros:

○ Index for long-living time series is stored only once

● Cons:
○ harder to implement
○ needs to scan bigger timeseries_ids sets

time

Day 1 timeseries_ids Day 2 timeseries_ids Day N timeseries_ids

...

Solutions for high number of time series matching
(label=value)

Store multiple timeseries_ids per mergeset row
● Pros:

○ requires less memory (especially for long (label=value) pairs)
○ improves scan speed

● Cons:
○ hard to implement
○ hard to debug

Original rows: (label=value) timeseries_id1
 (label=value) timeseries_id2
 …
 (label=value) timeseries_idN

Optimized row: (label=value) timeseries_id1, timeseries_id2, … timeseries_idN

Shard inverted index by time series key (a set of
(label=value) pairs)
● Pros:

○ scales to multiple CPUs

● Cons:
○ requires more CPU resources

Shard 1

CPU 1

Shard 2

CPU 2

Shard N

CPU N

Merge timeseries_ids

...

Optimizations for timeseries_ids sets intersection
● {datacenter=”us-east”, job=”my-app”, instance=”my-host”} requires

intersection of three timeseries_ids sets:
○ (datacenter=”us-east”)
○ (job=”my-app”)
○ (instance=”my-host”)

● How to quickly intersect timeseries_ids sets?

Timeseries_ids sets intersection: naive approach
// intersectInts returns the intersection of a and b sets
func interesectInts(a, b []int) []int {
 var result []int
 for _, x := range a {
 for _, y := range b {
 if x == y {
 result = append(result, x)
 break
 }
 }
 }
 return result
}

What’s wrong with the naive approach?

What’s wrong with the naive approach?
● It works slowly with big sets
● It has O(N^2) complexity
● Let len(a) == 1M, len(b) == 1M
● Then the max number of iterations equals to len(a)*len(b)=1M*1M=1 trillion

Timeseries_ids intersection: map
// intersectInts returns the intersection of a and b sets
func interesectInts(a, b []int) []int {
 m := make(map[int]bool)
 for _, x := range a {
 m[x] = true
 }
 var result []int
 for _, y := range b {
 if m[y] {
 result = append(result, y)
 }
 }
 return result
}

Set intersection with map
● Pros:

○ Has O(N) complexity

● Cons:
○ Has high overhead on hashing

Timeseries_ids intersection: customized bitset
// intersectInts returns the intersection of a and b sets
func interesectInts(a, b []uint64) []uint64 {
 s := &uint64set.Set{}
 for _, x := range a {
 s.Add(x)
 }
 var result []uint64
 for _, y := range b {
 if s.Has(y) {
 result = append(result, y)
 }
 }
 return result
}

Set intersection with customized bitset
● Pros:

○ Up to 10x better performance comparing to map-based intersection
○ Lower memory usage for big sets (>1M items)

● Cons:
○ Non-trivial implementation
○ Memory usage can explode if improperly used

Customized bitset: implementation details
● Located at lib/uint64set
● Optimized for dense serial timeseries_ids where higher 32 bits are constant
● Doesn’t provide data persistence

lib/uint64set API
package uint64set // import "github.com/VictoriaMetrics/VictoriaMetrics/lib/uint64set"

type Set struct {
// Has unexported fields.

}
 Set is a fast set for uint64.

 It should work faster than map[uint64]struct{} for semi-sparse uint64 values
 such as MetricIDs generated by lib/storage.

 It is unsafe calling Set methods from concurrent goroutines.

func (s *Set) Add(x uint64)
func (s *Set) AppendTo(dst []uint64) []uint64
func (s *Set) Clone() *Set
func (s *Set) Del(x uint64)
func (s *Set) Has(x uint64) bool
func (s *Set) Len() int

lib/uint64set internals
type Set struct {
 itemsCount int
 buckets []*bucket32
}
type bucket32 struct {
 hi uint32
 b16his []uint16
 buckets []*bucket16
}
type bucket16 struct {
 bits [wordsPerBucket]uint64
}
const (
 bitsPerBucket = 1 << 16
 wordsPerBucket = bitsPerBucket / 64
)

lib/uint64set internals: Set.Add
// Add adds x to s.
func (s *Set) Add(x uint64) {
 hi := uint32(x >> 32)
 lo := uint32(x)
 for _, b32 := range s.buckets {
 if b32.hi == hi {
 if b32.add(lo) {
 s.itemsCount++
 }
 return
 }
 }
 s.addAlloc(hi, lo)
}

lib/uint64set internals: bucket32.add
func (b *bucket32) add(x uint32) bool {
 hi := uint16(x >> 16)
 lo := uint16(x)
 if len(b.buckets) > maxUnsortedBuckets {
 return b.addSlow(hi, lo)
 }
 for i, hi16 := range b.b16his {
 if hi16 == hi {
 return b.buckets[i].add(lo)
 }
 }
 b.addAllocSmall(hi, lo)
 return true
}

lib/uint64set internals: bucket16.add
func (b *bucket16) add(x uint16) bool {
 wordNum, bitMask := getWordNumBitMask(x)
 word := &b.bits[wordNum]
 ok := *word&bitMask == 0
 *word |= bitMask
 return ok
}

More optimizations

More optimizations
● We covered small subset of VictoriaMetrics optimizations

More optimizations
● We covered small subset of VictoriaMetrics optimizations
● There are many more optimizations in the code

More optimizations
● We covered small subset of VictoriaMetrics optimizations
● There are many more optimizations in the code
● The majority of these optimizations are applied after `go tool pprof` analysis

More optimizations
● We covered small subset of VictoriaMetrics optimizations
● There are many more optimizations in the code
● The majority of these optimizations are applied after `go tool pprof` analysis
● Investigate VictoriaMetrics Go code - it is free and open source:

https://github.com/VictoriaMetrics/VictoriaMetrics

https://github.com/VictoriaMetrics/VictoriaMetrics

Questions?

Aliaksandr Valialkin, CTO at VictoriaMetrics

