Go optimizations in
VictoriaMetrics

Aliaksandr Valialkin, CTO at VictoriaMetrics

About me

https://github.com/valyala

I’'m fond of Go and performance optimizations
Fasthttp author

VictoriaMetrics core developer

https://github.com/valyala

Agenda

What is VictoriaMetrics?

What is time series?

What does time series database do?

Time series database architecture

Inverted index implementations, issues and optimizations
Specialized bitset implementation in Go

What is VictoriaMetrics?

What is VictoriaMetrics?

e [ime series database

What is VictoriaMetrics?

e [ime series database

e Itis based on architecture ideas from ClickHouse
o MergeTree data structure
o Parallel computations on all the CPU cores
o Process data in blocks that fit CPU cache

What is VictoriaMetrics?

e [ime series database

e Itis based on architecture ideas from ClickHouse
o MergeTree data structure
o Parallel computations on all the CPU cores
o Process data in blocks that fit CPU cache

e Provides the best on-disk data compression

What is VictoriaMetrics?

e [ime series database

e Itis based on architecture ideas from ClickHouse
o MergeTree data structure
o Parallel computations on all the CPU cores
o Process data in blocks that fit CPU cache

e Provides the best on-disk data compression
e Scales vertically and horizontally

What is VictoriaMetrics?

e [ime series database

e Itis based on architecture ideas from ClickHouse
o MergeTree data structure
o Parallel computations on all the CPU cores
o Process data in blocks that fit CPU cache

e Provides the best on-disk data compression
e Scales vertically and horizontally
o Fast

What is VictoriaMetrics?

e [ime series database

e |tis based on architecture ideas from ClickHouse

o MergeTree data structure
o Parallel computations on all the CPU cores
o Process data in blocks that fit CPU cache

Provides the best on-disk data compression
Scales vertically and horizontally

Fast

Written in Go

What is time series?

What is time series?

e A series of (timestamp, value) pairs

What is time series?

e A series of (timestamp, value) pairs
e Pairs are ordered by timestamp

What is time series?

e A series of (timestamp, value) pairs
e Pairs are ordered by timestamp
e \alue is floatc4

What is time series?

A series of (timestamp, value) pairs
Pairs are ordered by timestamp
Value is float64

Each time series is uniquely identified by a key

What is time series?

A series of (timestamp, value) pairs

Pairs are ordered by timestamp

Value is float64

Each time series is uniquely identified by a key

A key contains non-empty set of (label=value) pairs

What is time series?

A series of (timestamp, value) pairs

Pairs are ordered by timestamp

Value is float64

Each time series is uniquely identified by a key

A key contains non-empty set of (label=value) pairs
Example:

{ name__="cpu_usage”, instance="my-server”’, datacenter="us-east”}

(t1, 10), (t2, 20), (t3, 12), (tN, 15)

Time series applications

Time series applications

e DevOps - CPU, RAM, network, rps, errors count

Time series applications

e DevOps - CPU, RAM, network, rps, errors count
e |oT - temperature, pressure, geo coordinates

Time series applications

e DevOps - CPU, RAM, network, rps, errors count
e |oT - temperature, pressure, geo coordinates
e Finance - stock prices

Time series applications

DevOps - CPU, RAM, network, rps, errors count

loT - temperature, pressure, geo coordinates

Finance - stock prices

Industrial monitoring - sensors in wind turbines, factories, robots

Time series applications

DevOps - CPU, RAM, network, rps, errors count

loT - temperature, pressure, geo coordinates

Finance - stock prices

Industrial monitoring - sensors in wind turbines, factories, robots
Cars - engine health, tire pressure, speed, distance

Time series applications

DevOps - CPU, RAM, network, rps, errors count

loT - temperature, pressure, geo coordinates

Finance - stock prices

Industrial monitoring - sensors in wind turbines, factories, robots
Cars - engine health, tire pressure, speed, distance

Aircraft and aerospace - black box, spaceship telemetry

Time series applications

DevOps - CPU, RAM, network, rps, errors count

loT - temperature, pressure, geo coordinates

Finance - stock prices

Industrial monitoring - sensors in wind turbines, factories, robots
Cars - engine health, tire pressure, speed, distance

Aircraft and aerospace - black box, spaceship telemetry
Healthcare - cardiogram, blood pressure

What does time series database do?

What does time series database do?

e Stores (timestamp, value) data points under the given key

l
N
N

What does time series database do?

e Stores (timestamp, value) data points under the given key
e Provides an API for querying time series:

|
AN
N

N

What does time series database do?

e Stores (timestamp, value) data points under the given key

e Provides an API for querying time series:
o Bykey

What does time series database do?

e Stores (timestamp, value) data points under the given key

e Provides an API for querying time series:
o Bykey
o By (label=value) pair

What does time series database do?

e Stores (timestamp, value) data points under the given key
e Provides an API for querying time series:

o Bykey

o By (label=value) pair

o By a set of (label=value) pairs

What does time series database do?

e Stores (timestamp, value) data points under the given key

e Provides an API for querying time series:
o Bykey
o By (label=value) pair
o By a set of (label=value) pairs
o By a set of (label=<regexp>) pairs

What does time series database do? O
e Stores (timestamp, value) data points under the given key
e Provides an API for querying time series:

@)

O O O O

By key

By (label=value) pair

By a set of (label=value) pairs

By a set of (label=<regexp>) pairs

Example: { _name__="cpu_usage”, datacenter=~"us-.+"} would select all the cpu_usage
time series for all the datacenters in US

What does time series database do?

e Stores (timestamp, value) data points under the given key

e Provides an API for querying time series:
o Bykey
By (label=value) pair
By a set of (label=value) pairs
By a set of (label=<regexp>) pairs
Example: { _name__="cpu_usage”, datacenter=~"us-.+"} would select all the cpu_usage
time series for all the datacenters in US

e Provides query language for time series data: PromQL, InfluxQL, Flux, Q

O O O O

Time series database architecture

insert

2. timeseries_id: (timestamp, value) 1. {label=value} set

Data points Inverted index

4. a set of timeseries_ids 3. {label=value} filters

select

Query life

Query life

e Select all the timeseries _ids from inverted index that match the given set of
(label=value or regexp) pairs

Query life

e Select all the timeseries _ids from inverted index that match the given set of
(label=value or regexp) pairs

e Select all the data points for the given timeseries_ids set in the given time
range

Query life

e Select all the timeseries_ids from inverted index that match the given set of
(label=value or regexp) pairs

e Select all the data points for the given timeseries_ids set in the given time
range

e Perform additional processing for the selected data points

Inverted index

Inverted index

o A(K:V)map

Inverted index

o A(K:V)map
e Kis (label=value) pair

| (-
Inverted index

o A(K:V)map
e Kis (label=value) pair

e Vs a set of timeseries_ids for all the time series with the given (label=value)
pair

Inverted index

o A(K:V)map

e Kis (label=value) pair

e Vs a set of timeseries_ids for all the time series with the given (label=value)
pair

e Quickly finds all the timeseries_ids for the given (label=value) pair

Inverted index

o A(K:V)map

e Kis (label=value) pair

e Vs a set of timeseries_ids for all the time series with the given (label=value)
pair

e Quickly finds all the timeseries_ids for the given (label=value) pair

e Quickly finds all the timeseries_ids for the given set of (label=value) pairs

Inverted index implementations

Inverted index: naive implementation

var invertedIndex = make(map[string][]int)

func getMetricIDs(labelValues []string) []int {
metricIDs := invertedIndex[labelValue[©0]]
for _, labelValue := range labelValues[1l:] {
newMetricIDs := invertedIndex[labelValue]
metricIDs = intersectInts(metricIDs, newMetricIDs)

}

return metricIDs

Inverted index: naive implementation issues

Inverted index: naive implementation issues

e Missing persistence - data is lost on process restart

Inverted index: naive implementation issues

e Missing persistence - data is lost on process restart
e Inverted index must fit RAM - doesn’t scale to big number of time series

&

Inverted index: LevelDB S -

—

e Store {(label=value): timeseries_id} rows in LevelDB
e Extract all the timeseries_ids from all the rows for the given (label=value) pair

Inverted index: LevelDB

var invertedIndex *LevelDB

func getMetricIDs(labelValues []string) []int {
metricIDs := invertedIndex.GetValues(labelValue[©0])

for _, labelValue := range labelValues[1l:] {
newMetricIDs := invertedIndex.GetValues(labelValue)

metricIDs = intersectInts(metricIDs, newMetricIDs)

}

return metricIDs

Inverted index: LevelDB issues

Inverted index: LevelDB issues

e Slower than the naive implementation

Inverted index: LevelDB issues

e Slower than the naive implementation
e (Cgo overhead for LevelDB and RocksDB

Inverted index: mergeset

‘l
T
\ \\»\\\,,
S

Inverted index: mergeset

e Based on MergeTree data structure from ClickHouse

Inverted index: mergeset

e Based on MergeTree data structure from ClickHouse
e Optimized for fast inverted index lookups in VictoriaMetrics

Inverted index: mergeset

e Based on MergeTree data structure from ClickHouse
e Optimized for fast inverted index lookups in VictoriaMetrics
e Written in pure Go

Inverted index: mergeset

Based on MergeTree data structure from ClickHouse
Optimized for fast inverted index lookups in VictoriaMetrics
Written in pure Go

The APl is similar to LevelDB or RocksDB

Inverted index: production issues

e High churn rate

B
Inverted index: production issues =

e High churn rate
e High number of time series matching the given (label=value) pair (hundreds of
millions)

Inverted index: production issues A

e High churn rate

e High number of time series matching the given (label=value) pair (hundreds of
millions)

e Matching (label=<regexp>)

High churn rate

High churn rate

e Certain labels are constantly changed

High churn rate

e Certain labels are constantly changed
e Forinstance, {deployment_id="<deployment_id>"} in Kubernetes

High churn rate

e Certain labels are constantly changed
e Forinstance, {deployment_id="<deployment_id>"} in Kubernetes
e Each deployment starts new set of time series

High churn rate

Certain labels are constantly changed

For instance, {deployment_id="<deployment_id>"} in Kubernetes
Each deployment starts new set of time series

The number of {datacenter="us-east”} time series grows over time

High churn rate

Certain labels are constantly changed

For instance, {deployment_id="<deployment_id>"} in Kubernetes
Each deployment starts new set of time series

The number of {datacenter="us-east”} time series grows over time
But the number of {datacenter="us-east”} time series for the last day
remains constant

High churn rate

Certain labels are constantly changed

For instance, {deployment_id="<deployment_id>"} in Kubernetes

Each deployment starts new set of time series

The number of {datacenter="us-east”} time series grows over time

But the number of {datacenter="us-east”} time series for the last day
remains constant

How to provide constant speed for selecting {datacenter="us-east”} time
series for the last day?

High churn rate solutions

Partition inverted index by time

e Pros:
o Simple
o Fast
e Cons:

o duplicates inverted index data for long-living time series

Partition 1 Partition 2 Partition 3

Partition N

time

Per-day timeseries_ids sets for active time serie

e Pros:
o Index for long-living time series is stored only once
e Cons:

o harder to implement
o needs to scan bigger timeseries_ids sets

Day 1 timeseries_ids Day 2 timeseries_ids Day N timeseries_ids

time

Solutions for high number of time series matchmb
(label=value)

Store multiple timeseries_ids per mergeset row

e Pros:
o requires less memory (especially for long (label=value) pairs)
o improves scan speed

e Cons:
o hard to implement
o hard to debug

Original rows: |(label=value) timeseries_id1
(label=value) timeseries_id2

(label=value) timeseries_idN

Optimized row: |(label=value) timeseries_id1, timeseries_id2, ... timeseries_idN

\

Shard inverted index by time series key (a setof
(label=value) pairs)

e Pros:
o scales to multiple CPUs
e Cons:

o requires more CPU resources

Shard 1 Shard 2 Shard N

CPU 1 CPU 2 / CPUN

\ Merge timeseries_ids /

Optimizations for timeseries_ids sets intersectio

e {datacenter="us-east”, job="my-app”, instance="my-host”} requires
intersection of three timeseries_ids sets:

o (datacenter="us-east”)

o (job="my-app”)
o (instance="my-host”)

e How to quickly intersect timeseries_ids sets?

. L . . . N
Timeseries _ids sets intersection: naive approac S

// intersectInts returns the intersection of a and b sets
func interesectInts(a, b []int) []int {
var result []int

for , X := range a {
for , y := range b {
if x ==y {
result = append(result, x)
break
}
}
}

return result

What's wrong with the naive approach?

-

What’s wrong with the naive approach? S

It works slowly with big sets

It has O(N”*2) complexity

Let len(a) == 1M, len(b) == 1M

Then the max number of iterations equals to len(a)*len(b)=1M*1M=1 trillion

Timeseries _ids intersection: map

// intersectInts returns the intersection of a and b sets
func interesectInts(a, b []int) []int {
m := make(map[int]bool)
for , X := range a {
m[x] = true
}
var result []int
for , y :=range b {
if mly] {
result = append(result, y)
}

}

return result

Set intersection with map

e Pros:
o Has O(N) complexity
e Cons:

o Has high overhead on hashing

Timeseries_ids intersection: customized bitset

// intersectInts returns the intersection of a and b sets
func interesectInts(a, b [Juint64) []Juint64 {
s := &uint64set.Set{}
for , X := range a {
s.Add(x)
}
var result []Juinte4
for , y :=range b {
if s.Has(y) {
result = append(result, y)

}
}

return result

Set intersection with customized bitset

e Pros:
o Up to 10x better performance comparing to map-based intersection
o Lower memory usage for big sets (>1M items)

e Cons:

o Non-trivial implementation
o Memory usage can explode if improperly used

Customized bitset: implementation details _

e Located at lib/uint64set
e Optimized for dense serial timeseries_ids where higher 32 bits are constant
e Doesn’t provide data persistence

lib/uinte4set API

package uint64set // import "github.com/VictoriaMetrics/VictoriaMetrics/lib/uint64set"

type Set struct {
I/l Has unexported fields.
}

Set is a fast set for uint64.

It should work faster than map[uint64]struct{} for semi-sparse uint64 values
such as MetriclDs generated by lib/storage.

It is unsafe calling Set methods from concurrent goroutines.

func (s *Set) Add(x uint64)

func (s *Set) AppendTo(dst [Juint64) [Juint64
func (s *Set) Clone() *Set

func (s *Set) Del(x uint64)

func (s *Set) Has(x uint64) bool

func (s *Set) Len() int

lib/uint64set internals

type Set struct {
itemsCount int
buckets []*bucket32

}

type bucket32 struct {
hi uint32
bl6his []Juintil6
buckets []*bucketl6

}

type bucketl6 struct {
bits [wordsPerBucket]uint64

}

const (
bitsPerBucket
wordsPerBucket

1 << 16

bitsPerBucket / 64

lib/uinté4set internals: Set.Add

// Add adds x to s.
func (s *Set) Add(x uint64) {

hi := uint32(x >> 32)
uint32(x)
for _, b32 := range s.buckets {

if b32.hi == hi {

if b32.add(lo) {
s.itemsCount++

}
return
}
}
s.addAlloc(hi, lo)

lib/uinto4set internals: bucket32.add

func (b *bucket32) add(x uint32) bool {

hi := uintl6(x >> 16)

lo := uintl6(x)

if len(b.buckets) > maxUnsortedBuckets {
return b.addSlow(hi, lo)

}

for i, hilé := range b.bl6his {
if hilé == hi {

return b.buckets[i].add(1lo)

}

}

b.addAllocSmall(hi, lo)

return true

lib/uinto4set internals: bucket16.add

func (b *bucketl6) add(x uintl6) bool {
wordNum, bitMask := getWordNumBitMask(x)
word := &b.bits[wordNum]
ok := *word&bitMask ==
*word |= bitMask
return ok

More optimizations

More optimizations

e \We covered small subset of VictoriaMetrics optimizations

More optimizations

e \We covered small subset of VictoriaMetrics optimizations
e There are many more optimizations in the code

More optimizations

e \We covered small subset of VictoriaMetrics optimizations
e There are many more optimizations in the code
e The majority of these optimizations are applied after "go tool pprof™ analysis

More optimizations

We covered small subset of VictoriaMetrics optimizations

There are many more optimizations in the code

The majority of these optimizations are applied after "go tool pprof’ analysis
Investigate VictoriaMetrics Go code - it is free and open source:

https://qgithub.com/VictoriaMetrics/VictoriaMetrics

https://github.com/VictoriaMetrics/VictoriaMetrics

Questions?

Aliaksandr Valialkin, CTO at VictoriaMetrics

