2007-2008
Measuring�Evolution of Populations
AP Biology
5 Agents of evolutionary change
Mutation
Gene Flow
Genetic Drift
Selection
Non-random mating
AP Biology
Populations & gene pools
AP Biology
Evolution of populations
REMOVE all agents of evolutionary change
AP Biology
Hardy-Weinberg equilibrium
W. Weinberg
physician
G.H. Hardy
mathematician
AP Biology
Hardy-Weinberg theorem
p + q = 1
bb
Bb
BB
AP Biology
Hardy-Weinberg theorem
p2 + 2pq + q2 = 1
bb
Bb
BB
AP Biology
H-W formulas
bb
Bb
BB
BB
B
b
Bb
bb
AP Biology
Using Hardy-Weinberg equation
What are the genotype frequencies?
q2 (bb): 16/100 = .16
q (b): √.16 = 0.4
p (B): 1 - 0.4 = 0.6
population: �100 cats
84 black, 16 white
How many of each genotype?
bb
Bb
BB
p2=.36
2pq=.48
q2=.16
Must assume population is in H-W equilibrium!
AP Biology
Using Hardy-Weinberg equation
bb
Bb
BB
p2=.36
2pq=.48
q2=.16
Assuming �H-W equilibrium
Sampled data
bb
Bb
BB
p2=.74
2pq=.10
q2=.16
How do you explain the data?
p2=.20
2pq=.64
q2=.16
How do you explain the data?
Null hypothesis
AP Biology
Application of H-W principle
AP Biology
Sickle cell frequency
Why is the Hs allele maintained at such high levels in African populations?
Suggests some selective advantage of being heterozygous…
AP Biology
Malaria
Single-celled eukaryote parasite (Plasmodium) spends part of its life cycle in red blood cells
1
2
3
AP Biology
Heterozygote Advantage
Hypothesis:
In malaria-infected cells, the O2 level is lowered enough to cause sickling which kills the cell & destroys the parasite.
Frequency of sickle cell allele & distribution of malaria
AP Biology
2005-2006
Any Questions??
Any Questions??
Any Questions??
AP Biology
2006-2007
Hardy-Weinberg�Lab Data
Mutation
Gene Flow
Genetic Drift
Selection
Non-random mating
AP Biology
Hardy Weinberg Lab: Equilibrium
total alleles = 36
p (A): (4+4+7)/36 = .42
q (a): (7+7+7)/36 = .58
18 individuals
36 alleles
p (A): 0.5
q (a): 0.5
Original population
AA
4
Aa
7
aa
7
How do you explain these data?
Case #1 F5
AA
.25
Aa
.50
aa
.25
AA
.22
Aa
.39
aa
.39
AP Biology
Hardy Weinberg Lab: Selection
total alleles = 30
p (A): (9+9+6)/30 = .80
q (a): (0+0+6)/30 = .20
15 individuals
30 alleles
p (A): 0.5
q (a): 0.5
Original population
AA
9
Aa
6
aa
0
How do you explain these data?
Case #2 F5
AA
.25
Aa
.50
aa
.25
AA
.60
Aa
.40
aa
0
AP Biology
Hardy Weinberg Lab:
total alleles = 30
p (A): (4+4+11)/30 = .63
q (a): (0+0+11)/30 = .37
15 individuals
30 alleles
p (A): 0.5
q (a): 0.5
Original population
AA
4
Aa
11
aa
0
How do you explain these data?
Case #3 F5
AA
.25
Aa
.50
aa
.25
AA
.27
Aa
.73
aa
0
Heterozygote Advantage
AP Biology
Hardy Weinberg Lab:
total alleles = 30
p (A): (6+6+9)/30 = .70
q (a): (0+0+9)/30 = .30
15 individuals
30 alleles
p (A): 0.5
q (a): 0.5
Original population
AA
6
Aa
9
aa
0
How do you explain these data?
Case #3 F10
AA
.25
Aa
.50
aa
.25
AA
.4
Aa
.6
aa
0
Heterozygote Advantage
AP Biology
Hardy Weinberg Lab: Genetic Drift
total alleles = 12
p (A): (4+4+2)/12 = .83
q (a): (0+0+2)/12 = .17
6 individuals
12 alleles
p (A): 0.5
q (a): 0.5
Original population
AA
4
Aa
2
aa
0
How do you explain these data?
Case #4 F5-1
AA
.25
Aa
.50
aa
.25
AA
.67
Aa
.33
aa
0
AP Biology
Hardy Weinberg Lab: Genetic Drift
total alleles = 10
p (A): (0+0+4)/10 = .4
q (a): (1+1+4)/10 = .6
5 individuals
10 alleles
p (A): 0.5
q (a): 0.5
Original population
AA
0
Aa
4
aa
1
How do you explain these data?
Case #4 F5-2
AA
.25
Aa
.50
aa
.25
AA
0
Aa
.8
aa
.2
AP Biology
Hardy Weinberg Lab: Genetic Drift
total alleles = 10
p (A): (2+2+2)/10 = .6
q (a): (1+1+2)/10 = .4
5 individuals
10 alleles
p (A): 0.5
q (a): 0.5
Original population
AA
2
Aa
2
aa
1
How do you explain these data?
Case #4 F5-3
AA
.25
Aa
.50
aa
.25
AA
.4
Aa
.4
aa
.2
AP Biology
Hardy Weinberg Lab: Genetic Drift
5 individuals
10 alleles
p (A): 0.5
q (a): 0.5
Original population
AA Aa aa p q
1 .67 .33 0 .83 .17
2 0 .8 .2 .4 .6
3 4 .4 .2 .6 .4
How do you explain these data?
Case #4 F5
AA
.25
Aa
.50
aa
.25
AP Biology
2007-2008
Any Questions??
AP Biology