
5. Data Structures
2023-12-18

Section materials: jrsacher.github.io/cs50/

https://jrsacher.github.io/cs50/

Agenda

● The last week of C!
● Quick review of structs
● Linked lists

○ Nodes
○ -> operator
○ Comparison with arrays

● Stacks, queues
● Hash tables
● Trees
● Tries

typedef and structs

typedef old-name new-name;
typedef char * string;
typedef struct car
{

int year;
char model[10];
char plate[7];
bool automatic;

}
car;

Accessing structs

// declaration

car mycar;

// field access

mycar.year = 2017;

strcpy(mycar.plate, “CS50”);

mycar.automatic = true;

Accessing structs (with pointers!)

// declaration

car *mycar = malloc(sizeof(car));

// field access

mycar->year = 2017;

strcpy(mycar->plate, “CS50”);

mycar->automatic = true;

// equivalent to (*mycar).automatic = false

linked lists

Arrays

Data stored sequentially in memory

● Good
○ Rapid, random access
○ Efficient storage of data

● Bad
○ Fixed size

8 6 7 5 3 0 9

"Growing" arrays

8 6 7 5 3 0 9

8 6 7 5 3 0 98 6 7 5 3 0 9 2

Linked lists

Data stored separately, but connected

● Good
○ Shrink and grow as needed
○ Can insert or delete in arbitrary order

● Bad
○ No random access – linear search

■ There are technically ways around this, but they get complicated.
○ Takes more memory to store – the pointer takes extra space

8

7

35
9

0

6
–

● A linked list node is a special type of struct with (minimally) 2
properties:
○ Data of some type
○ A pointer to another node in the linked list.

typedef struct node
{

int value;
struct node *next;

}
node;

Linked Lists

Operations needed to work with linked lists

● Creating a linked list when it doesn’t exist.
● Inserting a new node into a linked list.
● Searching through a linked list to find an element.
● Deleting a single element from a linked list.
● Deleting an entire linked list.

Making a new linked list

● Dynamically allocate space for a new node with malloc.
○ This returns a pointer to your newly created node.

● Make sure you didn’t run out of memory.
○ Check that the pointer isn't NULL

● Initialize the value field.
● Initialize the next field (specifically, to NULL).

new

12

In code …
typedef struct node
{
 // the value to store in this node
 int value;
 // the link to the next node in the list
 struct node *next;
} node;

node *list = malloc(sizeof(node));
// Check that malloc succeeded
if (list == NULL)
{
 return 1;
}
// Add a value to the new node
list->value = 1;
list->next = NULL;

Inserting

● Dynamically allocate space for a new linked list node.
○ Check to make sure we didn’t run out of memory.

● Populate, insert node at the beginning of the linked list.
○ So which pointer do we move first? The pointer in the newly created node,

or the pointer pointing to the original head of the linked list?
○ This choice matters!

● Return a pointer to the new head of the linked list.
● Note: can also insert into the middle or end of a linked list

In code …
// Create a new node
node *n = malloc(sizeof(node));
// Check that malloc succeeded
if (n == NULL)
{
 free_linked_list(list);
 return 1;
}
// Add a value to the new node
n->value = 2;
// Link the new node to the list
n->next = list;
// move the list to point to the new node
list = n;

9 13 101512

list

n

list = n;

9 13 101512

list

n

9 13 101512

???

list

n

X

9 13 101512

list

n

9 13 101512

list

n

n->next = list;

9 13 101512

list

n

list = n;

✔

Searching

● Make a traversal pointer to list’s head (first element).
● If current node’s value field is what we want, return true.
● If not, set the traversal pointer to the next pointer in the list

and go back to the previous step.
● If you’ve reached the end of the list, return false.

In code …
bool found = false;
node *tmp = list;
while (tmp != NULL && !found)
{
 if (tmp->value == n)
 {
 printf("Found\n");
 found = true;
 break;
 }
 tmp = tmp->next;
}
if (!found)
{
 printf("Not found\n");
}

9 13 101512

list

tmp

node *tmp = list;

9 13 101512

list

tmp

tmp->value == 15;

9 13 101512

list

tmp

tmp = tmp->next;

9 13 101512

list

tmp

tmp->value == 15;

Deleting

● A bit like a combination of searching and inserting
● If deleting from the middle, use 2 temp pointers to

traverse linked list
○ Keep track of current and previous node

● When you find the value to delete
○ Point the previous node to the one pointed to by the current node

to close the gap
○ free the current node

In code …
node *tmp = list;
node *prev = NULL;
while (tmp != NULL)
{
 if (tmp->value == n)
 {
 if (prev == NULL)
 {
 // we need to delete the first node
 list = tmp->next;
 }
 else
 {
 // we need to delete some other node
 prev->next = tmp->next;
 }
 free(tmp);
 break;
 }
 prev = tmp;
 tmp = tmp->next;
}

9 13 101512

list

tmpprev

node *tmp = list; node *prev = NULL;

9 13 101512

list

tmpprev

prev = tmp; tmp = tmp->next;

9 13 101512

list

tmpprev

prev = tmp; tmp = tmp->next;

9 13 101512

list

tmpprev

prev->next = tmp->next;

13 101512

list

prev

free(tmp);

13 101512

list

prev

Note: -> operators can be chained!
list->next->value

stacks and queues

Stacks

● Commonly an array or linked list
● Last-in-first-out (LIFO)
● 2 operations:

○ Push
○ Pop

Queues

● Also arrays or linked list, but have to keep track of “front”
of the queue (previous and next pointers)

● First-in-first-out (FIFO)
● 2 Operations:

○ Enqueue
○ Dequeue

Implementation as linked list nodes
typedef struct stack
{
 int value;
 struct stack *next;
}
stack;

(pretty much a regular linked list!)

typedef struct node
{

int value;
struct node *next;

}
node;
typedef struct queue
{
 int count;
 node *front;
 node *rear;
}
queue;

Note: can be done in other ways, too!

Hash tables

An array of linked lists!
● Combines benefits of both

○ Random access to "bins"
○ Shorter linked lists to traverse

● Hash function determines which "bin" to use
○ Must be deterministic, only return a fixed number of choices

A

B

...

Z

Ab Aa Ac

Hash functions

● A hash function finds the appropriate “bucket” for data
● A good hash function should:

○ Use only the data being hashed
○ Use all of the data being hashed
○ Generate the same result every time given same input; no randomness!
○ Uniformly distribute data
○ Generate very different hash codes for very similar data.

...ahem

const int N = 1000000
// hash function described in http://www.cse.yorku.ca/~oz/hash.html
unsigned int hash(const char *str)
{
 unsigned int hash = 5381;
 char c;
 while ((c = *str++))
 {
 hash = ((hash << 5) + hash) + tolower(c);
 }
 return hash % N;
}

Note: use a big number for N!

hash.c

Collisions

● Unless your hash function is perfect, collisions will happen
● Solution 1: Linear probing (not ideal in our case)

○ If we have a collision, try to place the data in the next consecutive
element of the array instead

○ Try each consecutive element until we find a vacancy.
○ That way, if we don’t find it right where we expect it, it’s hopefully nearby.

● Solution 2: Chaining (with linked lists)
○ Each element of the array is now a pointer to the head of a linked list.
○ For a collision, make a new node and add it to the chain at that location.
○ The item is where it’s expected, just in a list

trees

Binary search tree

● Similar to a linked list, but instead of next, it has 2 pointers: left and right
● To be effective:

○ Data must be sorted
○ The tree must be balanced (~same number of entries on each side)

● Gives the speed of binary search with the flexibility of a linked list

tries

Tries

● Tries have unique keys, with values as simple as a bool to
tell you that the data exists in the structure

● No collisions – no two pieces of data have the same path
● Insertion, deletion, and lookup all O(1)!

○ In reality, takes up to n steps, where n is the height of the trie
● Tradeoff is space!

Trie struct for dictionary use

typedef struct node
{

bool is_word; // 1 byte
struct node *children[27] // 8 bytes * 27 = 216

}

node;

● 27 needed for 26 letters + ' (apostrophe)
● Word is never “stored” as a whole -- only the path

Graphical trie

1

0

11

11

3

4

18

14

11

11

19
17

10 12

3

4

13

18

Questions?

