CosyPose: Consistent multi-view multi-object 6D pose estimation
6th International Workshop on Recovering 6D Object Pose
Yann Labbé 1,2, Justin Carpentier 1,2, Mathieu Aubry 4, Josef Sivic 1,2,3
1 Inria
2 DI ENS, PSL
3 CIIRC, CTU in Prague
4 ENPC
Input images
Output 3D scene
Multi-view 6D pose estimation
CosyPose: Approach overview
...
Robust multi-view multi-object reconstruction
Single-view 6D pose estimation
...
...
BOP 20 Challenge
Input RGB image
Single-view CosyPose
Coarse
network
Refiner
network
6D pose estimation
2D detection
6D pose
Coarse
network
6D pose estimation
Refiner
network
Coarse
network
6D pose estimation
Refiner
network
Mask RCNN
DeepIM, Li et al, ECCV 2018
Pose estimation networks
CNN
coarse
Input “canonical” pose
Input “coarse” pose
CNN
refiner
“Refined” pose
Pose update
(details in the paper)
Key ingredients
37.0
37.0
Pix2Pose, Park et al, ICCV 2019
T-LESS
29.5
29.5
63.7
37.0
evsd < 0.3
Pix2Pose
Ours w/o
data augmentation
Ours with data augmentation
20
40
0
60
29.5
37.0
63.8
With data augmentation
+ Access to a GPU cluster*
training 1 pose network: ~10 hours on 32 GPUs
*Jean-zay, French national cluster managed by GENCI-IDRIS
Input image
Predicted poses
3D visualization
BlenderProc: Denninger, Sundermeyer, Winkelbauer, Olefir, Hodan, Zidan, Elbadrawy, Knauer, Katam, Lodhi in RSS workshops.
BOP20 results
Pix2Pose, Park et al, ICCV 2019
RGB
RGB-D
CDPN, Li et al, ICCV 2019
CosyPose, Labbé et al, ECCV 2020
Synt (PBR [1])
Synt+Real
[1]
[5]
[3]
[4]
[2]
EPOS, Hodan et al, CVPR 2020
[6]
ARcore (7 datasets)
Code
https://github.com/ylabbe/cosypose
CosyPose: Consistent multi-view multi-object 6D pose estimation
6th International Workshop on Recovering 6D Object Pose
https://github.com/ylabbe/cosypose
Yann Labbé 1,2, Justin Carpentier 1,2, Mathieu Aubry 4, Josef Sivic 1,2,3
1 Inria
2 DI ENS, PSL
3 CIIRC, CTU in Prague
4 ENPC