Discrete �Mathematics
Chapter 7
Relations (關係)
大葉大學 資訊工程系 黃鈴玲
7.1 Relations and their properties.
※表示兩集合間元素的關係,最直覺的方式就是使用�序對(ordered pair) (有順序的配對)。
由序對構成的集合稱為二元關係(binary relation)。
Ch8-2
Example 1.
A : the set of students in your school.
B : the set of courses.
R = { (a, b) : a∈A, b∈B, 學生a 選修了課程 b }
Def 1
Let A and B be sets. A binary relation from A to B �is a subset R of A×B = { (a, b) : a∈A, b∈B }.
Ch8-3
0
1
2
a
b
A
B
R
R ⊆ A×B = { (0,a) , (0,b) , (1,a)
(1,b) , (2,a) , (2,b)}
∈R
∈R
Example 3. Let A={0, 1, 2} and B={a, b}, then �R = {(0,a),(0,b),(1,a),(2,b)} is a relation from A to B.
用圖形來表示關係:
Example: A : 男生, B : 女生, R : 夫妻關系� A : 城市, B : 州或省 R : 屬於 (Example 2)
Note. Relations vs. Functions
A relation can be used to express a 1-to-many
relationship between the elements of the sets
A and B.
(Function 不可一對多,只可多對一)
Ch8-4
Def 2. A relation on the set A is a subset of A × A
(i.e., a relation from A to A).
Example 4. � Let A be the set {1, 2, 3, 4}. 則� R = { (a, b)| a divides b }裡面包含哪些序對?
Sol :
Ch8-5
1
2
3
4
1
2
3
4
R = { (1,1), (1,2), (1,3), (1,4),
(2,2), (2,4),
(3,3),
(4,4) }
Example 5. 考慮下列定義在Z上的關係.
R1 = { (a, b) | a ≤ b }
R2 = { (a, b) | a > b }
R3 = { (a, b) | a = b or a = −b }
R4 = { (a, b) | a = b }
R5 = { (a, b) | a = b+1 }
R6 = { (a, b) | a + b ≤ 3 }
Ch8-6
哪些關係包含了序對�(1,1), (1,2), (2,1), (1,−1),
及 (2,2)?
Sol :
∈ | (1,1) | (1,2) | (2,1) | (1,−1) | (2,2) |
R1 | | | | | |
R2 | | | | | |
R3 | | | | | |
R4 | | | | | |
R5 | | | | | |
R6 | | | | | |
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
Exercise 7.1
2. 列出在集合{1, 2, 3, 4, 5, 6}上� 關係 R={(a,b) | a整除b} 中所有的有序數對。
Ch8-7
1. 列出由A={0,1, 2, 3, 4}到 B={0, 1, 2, 3}關係中所有� 的有序數對,其中關係 R 定義如下:� (a) a = b� (b) a + b = 4� (e) gcd(a, b)=1
Def 3. A relation R on a set A is called reflexive (反身性)� if (a,a)∈R for every a∈A.
Example 7. 考慮下列定義在 {1, 2, 3, 4} 上的關係:
R2 = { (1,1), (1,2), (2,1) }
R3 = { (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) }
R4 = { (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) }
哪些關係具備反身性(reflexive)?
Ch8-8
Sol :
(1, 1), (2, 2), (3, 3), (4, 4)都必須屬於R
※ 關係的性質:
⇒ R3
Example 8. 下列定義在Z上的關係,哪些具備反身性(reflexive)?
R1 = { (a, b) | a ≤ b }
R2 = { (a, b) | a > b }
R3 = { (a, b) | a = b or a = −b }
R4 = { (a, b) | a = b }
R5 = { (a, b) | a = b+1 }
R6 = { (a, b) | a + b ≤ 3 }
Sol :
所有Z中的元素a,(a,a)都要屬於R,R才有反身性
(0,0)∉R2,
⇒ R1, R3 and R4
Ch8-9
(0,0)∉R5,
(2,2)∉R6
Def 4.
(1) A relation R on a set A is called symmetric (對稱) if for a, b∈A,� (a, b)∈R ⇒ (b, a)∈R.
(2) A relation R on a set A is called � antisymmetric (反對稱) if for a, b∈A,
(a, b)∈R and (b, a)∈R ⇒ a = b.
Ch8-10
即若 a≠b且(a,b)∈R ⇒ (b, a)∉R
Ch8-11
Example 10. 下列關係,哪些有對稱性(symmetric)或反對稱性(antisymmetric)?
R2 = { (1,1), (1,2), (2,1) }
R3 = { (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) }
R4 = { (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) }
Sol :
對稱:若有序對(a,b),就要有序對(b,a)� 反對稱:若有序對(a,b)且a≠b,就不能有(b,a)
R2, R3 are symmetric
R4 are antisymmetric.
Def 5. A relation R on a set A is called � transitive(遞移) if for a, b, c ∈A, � (a, b)∈R and (b, c)∈R ⇒ (a, c)∈R.
Ch8-12
Ch8-13
Example 13. 下列關係有哪些具備遞移性(transitive)?
R2 = { (1,1), (1,2), (2,1) }
R3 = { (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4) }
R4 = { (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) }
Sol : 檢查:若(a, b)∈R 且(b, c)∈R ,則 (a, c)也必須∈R
R2 沒有遞移性,因 � (2,1) ∈ R2 and (1,2) ∈ R2 but (2,2) ∉ R2.
R3 沒有遞移性,因 � (2,1) ∈ R3 and (1,4) ∈ R3 but (2,4) ∉ R3.
R4 is transitive.
Exercise 7.1
4.對下列定義於所有人形成集合上的關係,判斷� 是否具有反身性、對稱性、反對稱性和遞移性。� 當 (a,b)∈R 若且唯若� (a) a 比 b 高� (b) a 與 b 生於同一天� (c) a 與 b 的名字相同� (d) a 與 b 有相同的祖父母�
Ch8-14
Exercise 7.1
7. 對下列定義於所有整數集合上的關係,判斷是否� 具有反身性、對稱性、反對稱性和遞移性。� (a) R={(x, y) | x ≠ y, where x, y∈Z }� (b) R={(x, y) | xy ≥ 1, where x, y∈Z }� (c) R={(x, y) | x = y + 1 or x = y − 1, where x, y∈Z }� (d) R={(x, y) | x ≡ y (mod 7) , where x, y∈Z }
Ch8-15
Example 17. Let A = {1, 2, 3} and B = {1, 2, 3, 4}.
The relation R1 = {(1,1), (2,2), (3,3)}
and R2 = {(1,1), (1,2), (1,3), (1,4)} can be
combined to obtain
R1 ∪ R2
R1 ∩ R2 = {(1,1)}
R1 - R2 = {(2,2), (3,3)}
R2 - R1 = {(1,2), (1,3), (1,4)}
R1 ⊕ R2 = {(2,2), (3,3), (1,2), (1,3), (1,4)}
Ch8-16
對稱差(symmetric difference), 即 (A ∪ B) – (A ∩ B)
antisymmetric 跟 symmetric可並存
Ch8-17
只要R中沒有(a, b)且a≠b即可
例:令A = {1,2,3}, 給出一個定義在A上的關係R,R需同時具備對稱性、反對稱性,但不具備反身性。
Sol :
R = {(1,1), (2,2)}