
Introduction to web
technologies

HTML + CSS + Javascript

Javi Agenjo (@tamat)

Introduction
When you decide to develop an application using any
programming language, one of the first problem you
face is that programming languages do not include a
library to create User Interfaces.

You need to use some framework to access the OS
layer. Every programming language has at least one,
but you need to choose it first.

One of the nice things about developing for the web is
that the web provides a very rich and simple
framework to create applications that include lots of
features, not only interface but also access to
peripherals (audio, input, gamepads, etc), and this API
is very easy to use.

Your Code

Framework

Operative System

Hardware

Goals
Introduction to web technologies:

● HTML to create the document
structure and content

● CSS to control is visual aspect

● Javascript for interactivity

Tools
What do we need to start:
● a good web-browser (Chrome or Firefox)
● a good text editor like:

○ VSCode (cross platform)
○ Notepad++ (win)
○ textWrangler (osx)
○ sublime text (cross platform)
○ ecode (cross platform)

● the example HTML code to start

https://code.visualstudio.com/
https://notepad-plus-plus.org/downloads/
https://www.sublimetext.com/
https://github.com/SpartanJ/ecode/releases/tag/ecode-0.5.2
https://tamats.com/upf/uploads/template_ECV.zip

How can I test my code

Just open the index.html from the template in your text editor and in your
browser.
When you do any change to the code, check it in the browser by pressing
F5 (refresh site)
To open the developer tools press:
Windows: Control + Shift + I or
OSX: Command + Opt + I
Other tools are online editors like scratchpad or htmledit

http://scratchpad.io/
http://htmledit.squarefree.com/

Anatomy of a Browser

Inside a browser
Browsers have very differentiate parts.

We are interested in two of them:

● the Rendering Engine (in charge
of transforming our HTML+CSS in
a visual image).

● The Javascript Interpreter (also
known as VM), in charge of
executing the Javascript code.

Technologies

● HTML

● CSS

● Javascript

Browsers as a renderer
Browser's act as a renderer that takes documents
and construct a visual representation of them.

Starting with the most simple one, a text document, it
will try to visualize it.

You can try, drop any .txt file into your browser to
visualize it.

The problem is that text documents without any
formatting tend to be hard to read for the user (and
quite boring).

That's why HTML was created, to give text some
format.

Markup language
There are many markup languages that
add special tags into the text that the
renderer wont show but use to know
how to display the text.

In HTML this tags use the next notation:

My name is Javi

HTML
HTML means Hyper Text Markup Language.

The HTML allow us to define the structure of a document or a
website.

HTML is NOT a programming language, it’s a markup language,
which means its purpose is to give structure to the content of the
website, not to define an algorithm.

It is a series of nested tags (it is a subset of XML) that contain all
the website information (like texts, images and videos). Here is an
example of tags:

<title>This is a title</title>

The HTML defines the page structure. A website can have several
HTMLs to different pages.

<html>
<head>
</head>
<body>

<div>
<p>Hi</p>

</div>
</body>

</html>

https://en.wikipedia.org/wiki/XML

HTML: basic rules
Some rules about HTML:

● It uses XML syntax (tags with attributes, can contain other tags).
<tag_name attribute="value"> content </tag_name>

● It stores all the information that must be shown to the user.
● There are different HTML elements for different types of information and behaviour.
● The information is stored in a tree-like structure (nodes that contain nodes inside) called

DOM (Document Object Model).
● It gives the document some semantic structure (pe. this is a title, this is a section, this is

a form) which is helpful for computers to understand websites content.
● It must not contain information related to how it should be displayed (that information

belongs to the CSS), so no color information, font size, position, etc.

HTML: syntax example

<div id="main">

<!-- this is a comment -->

 This is text without a tag.

<button class="mini">press me</button>

</div>

HTML: syntax example

<div id="main">

<!-- this is a comment -->

 This is text without a tag.

<button class="mini">press me</button>

</div>

Tag name
attributes

comment

text tag

self-closing tag

DOM is a tree

Every node can only have
one parent, and every node
can have several children,
so the structure looks like a
tree.

Although there are lots of tags in the HTML specification, 99% of the webs use a subset of
HTML tags with less that 10 tags, the most important are:

● <div>: a container, usually represents a rectangular area with information inside.
● : an image
● <a>: a clickable link to go to another URL
● <p>: a text paragraph
● <h1>: a title (h2,h3,h4 are titles of less importance)
● <input>: a widget to let the user introduce information
● <style> and <link>: to insert CSS rules
● <script>: to execute Javascript
● : a null tag (doesn't do anything), good for tagging info

HTML: main tags

HTML: other interesting tags
There are some tags that could be useful sometimes:

● <button>: to create a button
● <audio>: for playing audio
● <video>: to play video
● <canvas>: to draw graphics from javascript
● <iframe>: to put another website inside ours

HTML: wrapping the info
We use HTML tags to wrap different
information on our site.

The more structure has the information, the
easier will be to access it and present it.

We can change the way the information is
represented on the screen depending on the
tags where it is contained, so we shouldn't be
worried about using too many tags.

HTML: tagging correctly
Try to avoid doing this:

<div>

Title

Here is some content

Here is more content

</div>

Do this instead

<div>

<h1>Title</h1>

<p>Here is content.</p>

<p>Here is more content</p>

</div>

DONT DO THIS

HTML good use
It is good to have all the information properly wrapped in tags that give it some semantics.

We also can extend the code semantics by adding extra attributes to the tags:

● id: tells a unique identifier for this tag
● class: tells a generic identifier for this tag

<div id="profile-picture" class="mini-image">...</div>

HTML references

HTML Reference: a description of all HTML tags.

The 25 Most used tags: a list with information of the more
common tags.

HTML5 Good practices: some tips for starters

http://www.w3schools.com/tags/default.asp
http://www.mckremie.com/blog/2009/10/25-of-the-most-used-html-tags-and-tag-attributes/
http://www.codeproject.com/Tips/666578/HTML-and-Some-CSS-Best-Practice

Technologies

● HTML

● CSS

● Javascript

CSS
CSS allows us to specify how to present
(render) the document info stored in the
HTML.

Thanks to CSS we can control all the
aspects of the visualization and some other
features:
● Colors: content, background, borders
● Margins: interior margin, exterior

margin
● Position: where to put it
● Sizes: width, height
● Behaviour: changes on mouse over

CSS example

* {

color: blue; /*a comment */

margin: 10px;

font: 14px Tahoma;

}

This will change all the tags in my web (‘*‘ means all) to look blue with font Tahoma with
14px, and leaving a margin of 10px around.

CSS fields
Here is a list of the most common CSS fields and an example:

● color: #FF0000; red; rgba(255,00,100,1.0); //different ways to specify colors

● background-color: red;

● background-image: url('file.png');

● font: 18px 'Tahoma';

● border: 2px solid black;

● border-top: 2px solid red;

● border-radius: 2px; //to remove corners and make them more round

● margin: 10px; //distance from the border to the outer elements

● padding: 2px; //distance from the border to the inner elements

● width: 100%; 300px; 1.3em; //many different ways to specify distances

● height: 200px;

● text-align: center;

● box-shadow: 3px 3px 5px black;

● cursor: pointer;

● display: inline-block;

● overflow: hidden;

CSS how to add it

There are four ways to add CSS rules to your website:

● Inserting the code inside a style tag
<style>

p { color: blue }

</style>

● Referencing an external CSS file
<link href="style.css" rel="stylesheet" />

● Using the attribute style on a tag
<p style="color: blue; margin: 10px">

● Using Javascript (we will see this one later).

CSS selectors
Let's start by changing the background color of one tag of our website:

div {

background-color: red;

}

This CSS rule means that every tag DIV found in our website should have a red background
color. Remember that DIVs are used mostly to represent areas of our website.

We could also change the whole website background by affecting the tag body:

body {

background-color: red;

}

CSS selectors
What if we want to change one specific tag (not all the tags of the same type).

We can specify more precise selectors besides the name of the tag. For instance, by class
or id. To specify a tag with a given class name, we use the dot:

p.intro {

color: red;

}

This will affect only the tags p with class name intro:

<p class="intro">

CSS Selectors
There are several selectors we can use to narrow our rules to very specific tags of our website.

The main selectors are:

● tag name: just the name of the tag
○ p { ... } //affects to all <p> tags

● dot (.): affects to tags with that class
○ p.highlight { ... } //affects all <p> tags with class="highlight"

● sharp character (#): specifies tags with that id
○ p#intro { ... } //affects to the <p> tag with the id="intro"

● two dots (:): behaviour states (mouse on top)
○ p:hover { ... } //affects to <p> tags with the mouse over

● brackets ([attr='value']): tags with the attribute attr with the value 'value'
○ input[type="text"] {...} // affects to the input tags of the type text

CSS Selectors
You can also specify tags by its context, for example: tags that are inside of tags matching a
selector. Just separate the selectors by an space:

div#main p.intro { ... }

This will affect to the p tags of class intro that are inside the tag div of id main

<div id="main">

 <p class="intro">....</p> ← Affects this one

</div>

<p class="intro">....</p> ← but not this one

CSS Selectors
And you can combine selectors to narrow it down more.

div#main.intro:hover { ... }

will apply the CSS to the any tag div with id main and class intro if the mouse is over.

And you do not need to specify a tag, you can use the class or id selectors without tag, this
means it will affect to any node of id main

#main { ... }

CSS Selectors
If you want to select only elements that are direct child of one element (not that have an
ancestor with that rule), use the > character:

ul.menu > li { ... }

Finally, if you want to use the same CSS actions to several selectors, you can use the
comma , character:

div, p { … } ← this will apply to all divs and p tags

HTML arrange
It is important to understand how the browser
arranges the elements on the screen.

Check this tutorial where it explains the
different ways an element can be arranged
on the screen.

You can change the way elements are
arranged using the display property:

div { display: inline-block; }

Also check the property float.

https://developer.mozilla.org/en-US/docs/Web/CSS/display
https://developer.mozilla.org/es/docs/Web/CSS/float

Box Model
It is important to note that by default any
width and height specified to an element will
not take into account its margin, so a div with
width 100px and margin 10px will measure
120px on the screen, not 100px.

This could be a problem breaking your
layout.

You can change this behaviour changing the
box model of the element so the width uses
the outmost border:

div { box-sizing: border; }

Layout
One of the hardest parts of CSS is
construing the layout of your website (the
structure inside the window) .

By default HTML tends to put everything in
one column, which is not ideal.

There has been many proposals in CSS to
address this issue (tables, fixed divs, flex,
grid, …).

Flexbox
The first big proposal to address the layout
was the flexbox model.

This model allows to arrange stuff in one
direction (vertically or horizontally) very
easily.

You can even choose to arrange from right
to left (reverse).

It can also be used to arrange a series of
elements in different rows.

Check the tutorial for more info.

HTML

<div class="box">
 <div>One</div>
 <div>Two</div>
 <div>Three

first line

second line
 </div>
</div>

CSS

.box {
 display: flex;
}

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_flexible_box_layout/Basic_concepts_of_flexbox

Grid system
Because most sites are structured in a grid, I
recommend to use the CSS Grid system.

We just assign how many rows/columns a div
should use from the main grid and it will arrange
automatically.

Check this tutorial to create the site structure
easily

HTML

<div class="grid-container">
 <div class="grid-item1">1</div>
 <div class="grid-item2">2</div>
</div>

CSS

.grid-container {
 display: grid;
 grid-template-rows: 100px 100px;
 grid-template-columns: 100px 100px 100px;
 grid-gap: 5px;
}

.grid-item1 {
 background: blue;
 border: black 5px solid;
 grid-column-start: 1;
 grid-column-end: 5;
 grid-row-start: 1;
 grid-row-end: 3;
}

https://developer.mozilla.org/es/docs/Web/CSS/CSS_Grid_Layout

Fullscreen divs
Sometimes we want to have a div that covers
the whole screen (to make a webapp),
instead of a scrolling website (more like
regular documents).

In that case remember to use percentages to
define the size of elements, but keep in mind
that percentages are relative to the element's
parent size, so you must set the size to the
<body> and <html> element to use 100%.

CSS

html, body {
width: 100%;
height: 100%;

}

div {
margin: 0;
padding: 0;

}

#main {
width: 100%;
height: 100%;

}

Trick to center

.horizontal-and-vertical-centering {
 display: flex;
 justify-content: center;
 align-items: center;
}

Centering divs can be hard sometimes, use this trick:

CSS further reading
There are many more rules for selectors.

Check some of the links to understand them better.

One line layouts tutorials

Understanding the Box Model: a good explanation of how to position the information on your
document.

All CSS Selectors: the CSS selectors specification page.

CSS Transition: how to make animations just using CSS

TailwindCSS: a CSS Framework

https://www.youtube.com/watch?v=qm0IfG1GyZU
http://www.w3schools.com/css/css_boxmodel.asp
http://www.w3.org/TR/CSS2/selector.html
http://www.w3schools.com/css3/css3_transitions.asp
https://tailwindcss.com/

Technologies

● HTML

● CSS

● Javascript

Interactivity
Once the web was already being used
they realize people wanted to interact
with the websites in a more meaningful
way.

So they added an Interpreter to execute
a script language that could modify the
content of the web dynamically.

Brendan Eich was tasked to develop it in
one week and it has become one of the
most important languages.

Javascript
A regular programming language, easy to start, hard to
master.

Allows to give some interactivity to the elements on the web.

Syntax similar to C or Java but with no types.

You can change the content of the HTML or the CSS applied
to an element.

You can even send or retrieve information from the internet to
update the content of the web without reloading the page.

var my_number = 10;

function say(str)

{

console.log(str);

}

say("hello");

Javascript: insert code

There is three ways to execute javascript code in a website:

● Embed the code in the HTML using the <script> tag.

<script> /* some code */ </script>

● Import a Javascript file using the <script> tag:

<script src="file.js" />

● Inject the code on an event inside a tag:

<button onclick="javascript: /*code*/">press me</button>

Javascript: Syntax
Very similar to C++ or Java but much simpler.

var my_number = 10; //this is a comment

var my_string = "hello";

var my_array = [10,20,"name",true];

var my_object = { name: "javi", city: "Barcelona" };

function say(str)

{

for(var i = 0; i < 10; ++i)

console.log(" say: " + str);

}

Javascript example
<html>

<body>

<h1>This is a title</h1>

<script>

var title = document.querySelector("h1");

title.innerHTML = "This is another title";

</script>

</body>

</html>

Javascript API
Javascript comes with a rich API to do many things like:

● Access the DOM (HTML nodes)
● Do HTTP Requests
● Play videos and sounds
● Detect user actions (mouse move, key pressed)
● Launch Threads
● Access the GPU, get the Webcam image, ...

And the API keeps growing with every new update of the standard.

Check the WEB API reference to know more

https://developer.mozilla.org/es/docs/Web/API

Javascript: retrieving element
You can get elements from the DOM (HTML tree) using different approaches.

● Crawling the HTML tree (starting from the body, and traversing its children)

● Using a selector (like in CSS)

● Attaching events listeners (calling functions when some actions are
performed)

Javascript: crawling the DOM

From javascript you have different variables that you can access to get
information about the website:

● document: the DOM information (HTML)

● window: the browser window

The document variable allows to crawl the tree:

document.body.children[0] // returns the first node inside body tag

Javascript: using selectors
You can retrieve elements using selectors:

var nodes = document.querySelectorAll("p.intro");

will return an array with all <p class="intro"> nodes in the web.

Or if we have already a node and we want to search inside:

var node = mynode.querySelectorAll("p.intro")

Javascript: modify nodes
From JS you can change the attributes
mynode.id = "intro"; //sets an id

mynode.className = "important"; //set class

mynode.classList.add("good"); //to add to the current classes

Change the content
mynode.innerHTML = "<p>text to show</p>"; //change content

Modify the style (CSS)
mynode.style.color = "red"; //change any css properties

or add the behaviour of a node
mynode.addEventListener("click", function(e) {

//do something

});

Javascript: create nodes
Create elements:
var element = document.createElement("div");

And attach them to the DOM:
document.querySelector("#main").appendChild(element);

Or remove it from its parent:
element.remove();

You can clone an element also easily:
var cloned = element.cloneNode(true);

Javascript: hide and show elements
Sometimes it may be useful to hide one element or show another.

You can change an element CSS directly by accessing its property style.

To avoid being displayed on the web change display to "none"

element.style.display = "none"; //hides elements from being rendered

element.style.display = ""; //displays it again

Using Inputs
If you want the user to be able to input some text we use the tag <input>:

<input type="text"/>

There are other inputs, you can check this list.

From Javascript we can attach events like "click" or "keydown".

To read or modify the content of the input:

my_input_element.value = ""; //this will clear the text inside the input

https://developer.mozilla.org/es/docs/Web/HTML/Elemento/input

Example of a website
HTML in index.html

<link href="style.css" rel="stylesheet"/>

<h1>Welcome</h1>

<p>

<button>Click me</button>

</p>

<script src="code.js"/>

CSS in style.css

h1 { color: #333; }

button {

border: 2px solid #AAA;

background-color: #555;

}

Javascript in code.js

//fetch the button from the DOM

var button = document.querySelector("button");

//attach and event when the user clicks it

button.addEventListener("click", myfunction);

//create the function that will be called when the

button is pressed

function myfunction()

{

//this shows a popup window

alert("button clicked!");

}

Execution flow
It is important to have a clear
understanding of the execution flow of
your code.

Scripts are executed when the html is
being parsed.

Be careful accessing the DOM as the
DOM won’t contain all until all the HTML
is parsed.

It is good practice to start your code with
an init function called at the end of your
HTML.

<script>

var main = document.querySelector("#main");

//main here is null, as the element does

//exist yet

</script>

<div id="main"></div>

<script>

var main = document.querySelector("#main");

//main now is the right element

</script>

jQuery
jQuery is a library that makes working with the DOM much easier, using an unified
syntax and taking advantage of selectors:

$("p").remove(); //remove all tags p

$("#main").hide(); //hides the element of id main

$("#main").append("<h1>titulo</h1>") //adds content to an element

$("#wrap").css({ color: "red" }); //change the css

$("button#send").click(function() { /* code */ });

To include this library just add this to your HTML:
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>

Using the Dev Tools
Press Control + Shift + I (or F12) to open DevTools

Exercise
Create the layout for a
messaging application.

Structured like:

● Main container
○ Messages area

■ message
○ Typing area area

■ input

Further info
API References: DevDocs.io

Selectors: MDN Tutorial

To learn Javascript.

http://codeacademy.com

To learn jQuery:

http://docs.jquery.com/Tutorials

https://devdocs.io
https://developer.mozilla.org/en-US/docs/CSS/Getting_Started/Selectors
https://devdocs.io/
https://devdocs.io/

