
Better than loading
fast… is loading

instantly!

Barry Pollard
Web Performance Developer Advocate,

Google Chrome

Hands up who likes the

web?

Hands up who likes the
slow
web?

Core Web Vitals

Largest Contentful Paint

Largest Contentful Paint

2.5 seconds is seen as “Good”,

Largest Contentful Paint

2.5 seconds is seen as “Good”,

but can we do “Better than Good”?

Largest Contentful Paint

2.5 seconds is seen as “Good”,

but can we do “Better than Good”?

How can we get instant?

Websites have an inherent slowness

Websites have an inherent slowness

Websites have an inherent slowness

Websites have an inherent slowness

SPA is one attempt to work around this

SPA is one attempt to work around this

Spinner Page Application

Reminds me of 80s computer games loading

And all that’s before you even get to
the browser

To deliver instant loading we need to
be less reliant of both the network

and the client-side processing

To deliver instant loading we need to
be less reliant of both the network

and the client-side processing

How can the browser help with this?

A number of ways you can do this, but
they all basically fall into one of two
categories:

● Prefetch

● Prerender

● Service Workers can precache
● SPA
● <link rel="prefetch" href="...." as="...">
● Speculation Rules API

Prefetch

E.g. On a login page, prefetch the static app resources

<link rel="prefetch href="...." as="...">

Prefetch can help improve
future web page performance

but it it doesn’t get that
INSTANT feel we want

Options for this:

● <link rel="prerender" href="....">
● Speculation Rules

Prerender

<link rel="prerender href="....">

But it doesn’t actually prerender anymore 😢

https://developer.chrome.com/blog/nostate-prefetch

<link rel="prerender href="....">

Deprecated

For that we need the new Prerender 🥳

https://developer.chrome.com/docs/web-platform/prerender-pages

Speculation Rules

Speculation Rules

Can also
change to
“prefetch”

for
prefetching

future pages

Speculation Rules
The source is

(optional from
Chrome 122)

Speculation Rules

List of URLs

But how can you “know”
which link a user will click on?

But how can you “know”
which link a user will click on?

Isn’t this wasteful?

Document rules

Document rules
The “source”

is the
document
(again this
attribute is

optional from
122)

Document rules
A “where”
object tells
you what

URLs are in
play

Document rules

An “eagerness” setting
tells you when to
prerender:

● Eager: ASAP
● Moderate: On

hover for 200ms or
mouse/touchdown

● Conservate: On
mouse/touchdown

Document rules

Chrome 121!

Live demo time!!!

https://speculative-rules.glitch.me/

OK, but that doesn’t fix
the first page load?

Chrome uses this to
improve first page loads!

Why am I so obsessed
with “instant”?

It introduces new options
for web developers

…like View Transitions

View Transitions

https://developer.chrome.com/docs/web-platform/view-transitions/

https://docs.google.com/file/d/1plKFcX9tEBtK30ombFFyOCb0f-cYXwiU/preview

Live demo time #2!!!

Without Prerender
With Prerender

(needs chrome://flags/#view-transition-on-navigation)

https://deploy-preview-27--http203-playlist.netlify.app/
https://deploy-preview-29--http203-playlist.netlify.app/

What’s this got to

do with open source?

If you’ve an open source project

consider adding support for the

Speculation Rules API

Astro has added support!

https://astro.build/blog/astro-420/

There’s a WordPress Plugin

https://wordpress.org/plugins/speculation-rules/

Let’s make 2024

the year of

Instant Navigations!

Thank you
Barry Pollard

@tunetheweb

@tunetheweb@webperf.social

