Better than loading
fast... is loading
instantly!

Barry Pollard

Web Performance Developer Advocate,
Google Chrome

Brusse s / 3 &4 February 2024

Hands up who likes the

web?

Hands up who likes the
slow

web?

Core Web Vitals

LCP CLS INP

Largest Contentful Paint Cumulative Layout Shift Interaction to Next Paint

NEEDS

NEEDS POO NEEDS
IMPROVEMENT 8

HOOR IMPROVEMENT IMPROVEMENT

! ! ! !

2.5 sec 4.0 sec . 0.25 200 ms 500 ms

Largest Contentful Paint

Largest Contentful Paint

2.5 seconds is seen as “Good”
LC P

est Contentful Paint

POOR

NEEDS
el IMPROVEMENT
2.5 sec

Largest Contentful Paint

2.5 seconds is seen as “Good”,
LCP

Largest Contentful Paint but can we do “Better than Good”?

POOR

NEEDS
gE IMPROVEMENT

2.5 sec 4.0 sec

Largest Contentful Paint

L C P 2.5 seconds is seen as “Good”,
Largest Contentful Paint but can we do “Better than Good”?

o How can we get instant?

Websites have an inherent slowness

Websites have an inherent slowness

‘/\’Q

Websites have an inherent slowness

-

Websites have an inherent slowness

SPA is one attempt to work around this

SPA is one attempt to work around this

R\}

Spinner Page Application

Reminds me of 80s computer games loading

!

ﬂ
1
}
'
{

And all that’s before you even get to
the browser

DESTINATIONS ¥ EXPERIENCES ¥ INSPIRATIONS ¥ TRIPFINDER ¥ MOSTPOPULAR ABOUTUS v

Home / The trip finder

THE TRIP FINDER

They say the world has seven wonders. We think that's only the beginning.

WHEN DO YOU WANT TO TRAVEL? WHY DO YOU WANT TO TRAVEL?

TAKE ME THERE

DO NOT
TOUCH
ARTWORK

To deliver instant loading we need to
be less reliant of both the network
and the client-side processing

To deliver instant loading we need to
be less reliant of both the network
and the client-side processing

How can the browser help with this?

A number of ways you can do this, but
they all basically fall into one of two
categories:

e Prefetch

e Prerender

Prefetch

Service Workers can precache
SPA

<link rel="prefetch” href="...." as
Speculation Rules API

[X] >

E.g. On alogin page, prefetch the static app resources

Already registered?

Password

Forgot password?

We've made some important changes to our Data Privacy Notice,
under the new General Data Protection Regulation.

<!-- Prefetch Member

<link
<link
<link
<link
<link
<link
<link
<link
<link

rel="prefetch"
ref="prefetch"
rel="prefetch"
rel="prefetch"
rel="prefetch"
rel="prefetch"
rel="prefetch"
rel="prefetch"
rel="prefetch"

Area Content to make this fast to Load —-—>
href="/memberarea/" as="document'">
href="/tools/vue-memberarea/css/app.css" as="style">
href="/tools/vue-memberarea/js/app.js" as="script">
href="/memberarea/cms/config.json" as="fetch">
href="/api/address/towncounties.json" as="fetch">
href="/memberarea/cms/banner/" as="fetch">
href="/memberarea/cms/notice/claims-history/" as="fetch">
href="/memberarea/cms/subbanners/" as="fetch">
href="/memberarea/cms/subbanneryourwellbeing/" as="fetch">

<link rel="prefetch href="...." as="...">

Resource Hints: prefetch &-wo

Informs the browsers that a given resource should be
prefetched so it can be loaded more quickly. This is indicated
using <link rel="prefetch" href="(url)">

(@l IGLEON Usage relative Date relative Filtered m o)

Chrome Edge Safari Firefox Opera

8-120 | 12-120 s
121 121
122-124 & 7418 [123-125

Prefetch can help improve
future web page performance
but it it doesn’t get that
INSTANT feel we want

Prerender

Options for this:

o <link rel="prerender” href="....">
e Speculation Rules

<link rel="prerender href="....">

Resource Hints: prerender &-wo

Gives a hint to the browser to render the specified page in the
background, speeding up page load if the user navigates to it.
This is indicated using <link rel="prerender" href="(url)">

(@IqCIENGECl Usage relative Date relative Filtered £ o)

*
Chrome Edge Safari Firefox Opera

79-120 |3.1-17.2) 2-121
122

122-124 123-125

But it doesn’t actually prerender anymore

@ Chrome for Developers Get Inspired Docs Blog Articles Q_ Search docs, blogs and more

Blog

Introducing NoState Prefetch

Published on Friday, July 20, 2018 - Updated on Saturday, October 5, 2019

% Katie Hempenius
) Katie is a contributor to Chrome Developers

Twitter

Table of contents ~

Intro

NoState Prefetch is a new mechanism in Chrome that is an alternative to the deprecated
prerendering_process, used to power features like <link rel="prerender"> . Like
prerendering, it fetches resources in advance; but unlike prerendering it does not execute
JavaScript or render any part of the page in advance. The goal of NoState Prefetch is to use less

memory than prerendering, while still reducing page load times.

https://developer.chrome.com/blog/nostate-prefetch

<link rel="prerender href="....">

Resource Hints: prerender &-wo

Gives a hint to the browser to render the specified g

123-125

For that we need the new Prerender &

G Prerender pages in Chrome X +

< C 25 developer.chrome.com/docs/web-platform/prerende... ¥ & ¥ 3 n | 2

= @ Chrome for Developers Q -:é:- @ Language v Sign in

Prerender pages in Chrome for instant page
navigations Q-

Q Barry Pollard
e XO@O

Browser Support G 109 @ 109 @ x @ x

The Chrome team has been working on options to bring back full prerendering of future pages that a
user is likely to navigate to.

https://developer.chrome.com/docs/web-platform/prerender-pages

Speculation Rules

<script type="speculationrules">
{
"prerender": [

{

Ysolircet: list™,

"urls": ["next.html", "next2.html"]

]
}

</script>

Speculation Rules

000
Can also R e e e
change to - prerendert: |
“prefetch” R T———
for "urls": ["next.html", "next2.html"]

}
prefetching !
future pages </script>

Speculation Rules

The source is
(optional from
~ Chrome 122)

<script type="speculationrules">
{
"prerender": [

{

Ysolircet: list™,

"urls": ["next.html", "next2.html"]

]
}

</script>

Speculation Rules

<script type="speculationrules">
{
"prerender": [

{

Ysolircet: list™,

"urls": ["next.html", "next2.html"]

List of URLs
]
}

</script>

But how can you “know”
which link a user will click on?

But how can you “know”
which link a user will click on?

Isn’t this wasteful?

Document rules

<script type="speculationrules">

{

"prerender": [

{

"source": "document",
"where": {
"and": [

{"href_matches": "/x"},
{"not": { "href_matches":

]
b
"eagerness": "moderate"
}
]
i

</script>

"/logout/*"}}

The “source”
is the
document
(again this
attribute is
optional from
122)

Document rules

<script type="speculationrules">
i
"prerender": [
{
"source": "document",
"where": {
"and": [

{"href_matches": "/x"},
{"not": { "href_matches"

]
b,
"eagerness": "moderate"
}
]
i

</script>

: "/logout/*"}}

Document rules

<script type="speculationrules">
{

"prerender": [

{

"source": "document",

"where": {

and

{"href_matches": "/x"},
{"not": { "href_matches": "/logout/*"}}
]

b,
"eagerness": "moderate"
}
]
i

</script>

A “where”
object tells
you what
URLs are in

play

Document rules

<script type="speculationrules">
{
"prerender": [
{
"source": "document",
"where": {
"and": [
{"href_matches": "/x"},

{"not": { "href_matches":

]
i

"eagerness": "moderate"

]
¥

</script>

"/logout/*"}}

An “eagerness” setting
tells you when to
prerender:

Eager: ASAP
Moderate: On
hover for 200ms or
mouse/touchdown
e Conservate: On
mouse/touchdown

Document rules

<script type="speculationrules">

{

"prerender": [
{
"source": "document",
"where": {
"and": [
{"href_matches": "/x"},

{"not": { "href_matches":

]
b

"eagerness": "moderate"

]
¥

</script>

"/logout/*"}}

Live demo time!!l

https://speculative-rules.glitch.me/

OK, but that doesn’t fix
the first page load?

Chrome uses this to
improve first page loads!

@ Predictors X +

(& ® Chrome | chrome://predictors

Autocomplete Action Predictor Resource Prefetch Predictor

Filter zero confidences

Entries: 41

User Text URL Hit Count || Miss Count Confidence

d https://developer.chrome.com/ 16 19 0.45714285714285713

de https://developer.chrome.com/ 16 6 0.7272727272727273

dev https://developer.chrome.com/ 14 4 0.7777777777777778

deve https://developer.chrome.com/ 1

https://web.dev/ https://web.dev/ 7 0.4166666666666667

p https://pagespeed.web.dev/ 0.3125

pa https://pagespeed.web.dev/ 0 fl
https://pagespeed.web.dev/ 0 il
https://pagespeed.web.dev/ 0 il
https://twitter.com/ 0.0916030534351145
https://twitter.com/ 0.2857142857142857
https://twitter.com/ 0.5333333333333333
https://twitter.com/

https://twitter.com/

Why am | so obsessed
with “instant™?

It introduces new options

for web developers

...like View Transitions

View Transitions

https://developer.chrome.com/docs/web-platform/view-transitions/

https://docs.google.com/file/d/1plKFcX9tEBtK30ombFFyOCb0f-cYXwiU/preview

Live demo time #2!!!

Without Prerender
With Prerender

(needs chrome://flags/#view-transition-on-navigation)

https://deploy-preview-27--http203-playlist.netlify.app/
https://deploy-preview-29--http203-playlist.netlify.app/

What's this got to

do with open source?

If you’ve an open source project
consider adding support for the

Speculation Rules API

Astro has added support!

A Astro 4.2 | Astro X o+

(] 25 astro.build/blog/astro-420/#experimental-prerendering-pages-u... Y T}

(Experimental) Prerendering pages
using the Speculation Rules API

Thanks to Ross Robino, Astro’s ' prefetch feature now has experimental support for
prerendering pages using the currently Chromium-exclusive Speculation Rules API. This
API allows you to prerender pages on the client, and even run client-side JavaScript on
pages that the user is likely to visit next, allowing for a faster browsing experience.

To enable this feature, add the following to your | astro.config.mjs file:

import { defineConfig } from ‘'astro/config';

// https://astro.build/config
export default defineConfig({
+ prefetch: true,

+ experimental: {

+ clientPrerender: true,

+ 1

H;

This will respect your existing ' prefetch configuration options, but will now prerender all
links with the 'data-astro-prefetch attribute on the client, instead. A built-in fallback is

https://astro.build/blog/astro-420/

Feedback
¥ Appearance
K¢ Plugins (8
e Users

&~ Tools

Settings

General
Writing
Reading
Discussion
Media
Permalinks
Privacy

Performance

There’s a WordPress Plugin

Speculation Rules

This section allows you to control how URLs that your users navigate to are speculatively

Speculation Mode Prefetch
®) Prerender

Prerendering will lead to faster load times than prefetching. However, in case of interactive content, prefetching may be a safer

Eagerness Conservative (typically on click)
®) Moderate (typically on hover)
Eager (on slightest suggestion)

The eagerness setting defines the heuristics based on which the loading is triggered. "Eager” will have the minimum delay to start
speculative loads, "Conservative" increases the chance that only URLs the user actually navigates to are loaded

Save Changes

peculation-rules/

Let’'s make 2024
the year of

Instant Navigations!

Thank you

Barry Pollard

Y @tunetheweb

m @tunetheweb@webperf.social Brussels / 3 & & February 2024

