

Lecture 23: Introduction to Sorting II

CSE 373: Data Structures and Algorithms

1

Warm Up

Selection Sort		Insertion Sort		Heap Sort		
	Worst case runtime?	$\Theta(n^2)$	Worst case runtime?	$\Theta(n^2)$	Worst case runtime?	$\Theta(n \log n)$
	Best case runtime?	$\Theta(n^2)$	Best case runtime?	$\Theta(n)$	Best case runtime?	$\Theta(n)$
	In-practice runtime?	$\Theta(n^2)$	In-practice runtime?	$\Theta(n^2)$	In-practice runtime?	$\Theta(n \log n)$
	Stable?	No	Stable?	Yes	Stable?	No
	In-place?	Yes	In-place?	Yes	In-place?	Yes

https://www.youtube.com/watch?v=Xw2D9aJRBY4

Heap Sort

- 1. run Floyd's buildHeap on your data
- 2. call removeMin n times

```
public void heapSort(input) {
  E[] heap = buildHeap(input)
  E[] output = new E[n]
   for (n)
      output[i] =
removeMin(heap)
```

Worst case runtime?

Best case runtime?

In-practice runtime?

No Stable?

If we get In-place? clever...

In Place Heap Sort

In-place?

```
public void inPlaceHeapSort(input) {
    buildHeap(input) // alters original array
    for (n : input)
        input[n - i - 1] = removeMin(heap)
}

Best case runtime? O(nlogn)
In-practice runtime? O(nlogn)
Stable? No
```

Yes

Build a tree with the values: 12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6 Add all values to back of array percolateDown(parent) starting at last index percolateDown level 4 percolateDown level 3 percolateDown level 2 4 11 9 percolateDown level 1 15 12

Is It Really Faster?

Assume the tree is **perfect**

- the proof for complete trees just gives a different constant factor.

percolateDown() doesn't take $\log n$ steps each time!

Half the nodes of the tree are leaves

-Leaves run percolate down in constant time

1/4 of the nodes have at most 1 level to travel 1/8 the nodes have at most 2 levels to travel etc...

$$work(n) \approx \frac{n}{2} \cdot 1 + \frac{n}{4} \cdot 2 + \frac{n}{8} \cdot 3 + \dots + 1 \cdot (\log n)$$

Closed form Floyd's buildHeap

find a pattern -> powers of 2

Summation!

? = upper limit should give last term

We don't have a summation for this! Let's make it look more like a summation we do know.

Infinite geometric series

Floyd's buildHeap runs in O(n) time!

Announcements

EX 5 due today, EX 6 out

P4 checkpoint Sunday at midnight

- P4 due Wed 6/1
- OH are still too quiet

Sorting Strategy 3: Divide and Conquer

General recipe:

- 1. Divide your work into smaller pieces recursively
- **2. Conquer** the recursive subproblems
 - In many algorithms, conquering a subproblem requires no extra work beyond recursively dividing and combining it!
- **3.** Combine the results of your recursive calls

```
divideAndConquer(input) {
  if (small enough to solve):
    conquer, solve, return results
  else:
    divide input into a smaller pieces
    recurse on smaller pieces
    combine results and return
}
```


Merge Sort

Merge Sort: Divide Step

Recursive Case: split the array in half and recurse on both halves

Base Case: when array hits size 1, stop dividing. In Merge Sort, no additional work to conquer: everything gets sorted in combine step!

Sort the pieces through the magic of recursion

Merge Sort: Combine Step

Combining two *sorted* arrays:

- 1. Initialize **pointers** to start of both arrays
- 2. Repeat until all elements are added:
 - 1. Add whichever is smaller to the result array
 - 2. Move that pointer forward one spot

Works because we only move the smaller pointer – then "reconsider" the larger against a new value, and because the arrays are sorted we never have to backtrack!

Merge Sort

```
mergeSort(list) {
   if (list.length == 1):
        return list
   else:
        smallerHalf = mergeSort(new [0, ..., mid])
        largerHalf = mergeSort(new [mid + 1, ...])
        return merge(smallerHalf, largerHalf)
}
```

```
Worst case runtime? T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ 2T(\frac{n}{2}) + n & \text{otherwise} \end{cases}
Best case runtime? Same =\Theta(n \log n)
```

In Practice runtime? Same

Stable? Yes

In-place? No

n

Don't forget your old friends, the 3 recursive patterns!

Constant size Input

Divide and Conquer

There's more than one way to divide!

Mergesort:

- Split into two arrays.
- Elements that just happened to be on the left and that happened to be on the right.

Quicksort:

- Split into two arrays.
- Roughly, elements that are "small" and elements that are "large"
- How to define "small" and "large"? Choose a "pivot" value in the array that will partition the two arrays!

Quick Sort (v1)

Choose a "pivot" element, partition array relative to it!

Again, no extra conquer step needed!

 Conquer

 0
 0
 0
 0
 0
 0
 0

 1
 2
 6
 7
 8
 22
 55
 91

. . .

Simply concatenate the now-sorted arrays!

Quick Sort (v1): Divide Step

Recursive Case:

- Choose a "pivot" element
- Partition: linear scan through array, add smaller elements to one array and larger elements to another
- Recursively partition

Base Case:

When array hits size1, stop dividing.

Quick Sort (v1): Combine Step

Combine

Simply concatenate the arrays that were created earlier! Partition step already left them in order 😌

Quick Sort (v1)

```
quickSort(list) {
   if (list.length == 1):
        return list
   else:
        pivot = choosePivot(list)
        smallerHalf = quickSort(getSmaller(pivot, list))
        largerHalf = quickSort(getBigger(pivot, list))
        return smallerHalf + pivot + largerHalf
}
```

```
Worst case runtime? T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ T(n-1) + n & \text{otherwise} \end{cases} = \Theta(n^2)
Best case runtime? T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases} = \Theta(n\log n)
In-practice runtime? Just trust me: \Theta(n\log n)
(absurd amount of math to get here)
Stable? No
```

Worst case: Pivot only chops off one value Best case: Pivot divides each array in half

In-place? Can be done!

Can we do better?

How to avoid hitting the worst case?

- It all comes down to the pivot. If the pivot divides each array in half, we get better behavior

Here are four options for finding a pivot. What are the tradeoffs?

- -Just take the first element
- -Take the median of the full array
- -Take the median of the first, last, and middle element
- -Pick a random element

Strategies for Choosing a Pivot

Just take the first element

- Very fast!
- But has worst case: for example, sorted lists have $\Omega(n^2)$ behavior

Take the median of the full array

- Can actually find the median in O(n) time (google QuickSelect). It's complicated.
- $O(n \log n)$ even in the worst case... but the constant factors are **awful**. No one does quicksort this way.

Take the median of the first, last, and middle element

- Makes pivot slightly more content-aware, at least won't select very smallest/largest
- Worst case is still $\Omega(n^2)$, but on real-world data tends to perform well!

Pick a random element

- Get $O(n \log n)$ runtime with probability at least $1 1/n^2$
- No simple worst-case input (e.g. sorted, reverse sorted)

Quick Sort (v2: In-Place)

Quick Sort (v2: In-Place)

```
quickSort(list) {
   if (list.length == 1):
       return list
   else:
      pivot = choosePivot(list)
      smallerPart, largerPart = partition(pivot, list)
      smallerPart = quickSort(smallerPart)
      largerPart = quickSort(largerPart)
      return smallerPart + pivot + largerPart
}
```

partition:

- For in-place Quick Sort, series
 of swaps to build both
 partitions at once
 - Tricky part: moving pivot out
 of the way and moving it back!
 - Similar to Merge Sort divide step: two pointers, only move smaller one

Worst case runtime?

Best case runtime?

In-practice runtime?

Stable?

In-place?

No

Yes

 0
 1
 2
 3
 4
 5

 0
 3
 6
 9
 7
 8

Can we do better?

We'd really like to avoid hitting the worst case.

Key to getting a good running time, is always cutting the array (about) in half.

How do we choose a good pivot?

Here are four options for finding a pivot. What are the tradeoffs?

- -Just take the first element
- -Take the median of the first, last, and middle element
- -Take the median of the full array
- -Pick a random element as a pivot

Pivots

Just take the first element

- fast to find a pivot
- But (e.g.) nearly sorted lists get $\Omega(n^2)$ behavior overall

Take the median of the first, last, and middle element

- Guaranteed to not have the absolute smallest value.
- On real data, this works quite well...
- But worst case is still $\Omega(n^2)$

Take the median of the full array

- Can actually find the median in O(n) time (google QuickSelect). It's complicated.
- $O(n \log n)$ even in the worst case....but the constant factors are **awful**. No one does quicksort this way.

Pick a random element as a pivot

- somewhat slow constant factors
- Get $O(n \log n)$ running time with probability at least $1 1/n^2$
- "adversaries" can't make it more likely that we hit the worst case.

Median of three is a common choice in practice

Sorting: Summary

	Best-Case	Worst-Case	Space	Stable
Selection Sort	$\Theta(n^2)$	$\Theta(n^2)$	Θ(1)	No
Insertion Sort	Θ(n)	$\Theta(n^2)$	Θ(1)	Yes
Heap Sort	Θ(nlogn)	Θ(nlogn)	Θ(n)	No
In-Place Heap Sort	Θ(nlogn)	Θ(nlogn)	Θ(1)	No
Merge Sort	Θ(nlogn)	Θ(nlogn)	$\Theta(nlogn)$ $\Theta(n)^*$ optimized	Yes
Quick Sort	$\Theta(nlogn)$	$\Theta(n^2)$	Θ(n)	No
In-place Quick Sort	Θ(nlogn)	$\Theta(n^2)$	Θ(1)	No

What does Java do?

- Actually uses a combination of 3 different sorts:
 - If objects: use Merge Sort* (stable!)
 - If primitives: use Dual Pivot Quick Sort
 - If "reasonably short" array of primitives: use Insertion Sort
 - Researchers say 48 elements

Key Takeaway: No single sorting algorithm is "the best"!

- Different sorts have different properties in different situations
- The "best sort" is one that is well-suited to your data

^{*} They actually use Tim Sort, which is very similar to Merge Sort in theory, but has some minor details different

STRATEGY 1: ITERATIVE IMPROVEMENT

STRATEGY 2: IMPOSE STRUCTURE

STRATEGY 3: DIVIDE AND CONQUER

Insertion Sort

WORST

BEST

Simple, stable, low-overhead, great if already sorted.

SPACE

Selection Sort

WORST

BEST

Minimizes array writes, otherwise never preferred.

SPACE

Heap Sort

WORST

BEST

Always good runtimes

SPACE

Merge Sort

WORST

BEST

Stable, very reliable! In-place variant is slower.

SPACE

Quick Sort

WORST

BEST

Fastest in practice (constant factors), bad worst case.

SPACE

SPACE

Can we do better than n log n?

- For comparison sorts, **NO**. A proven lower bound!
 - Intuition: n elements to sort, no faster way to find "right place" than log n
- However, niche sorts can do better in specific situations!

Many cool niche sorts beyond the scope of 373!

★ IN-PLACE

Radix Sort (<u>Wikipedia</u>, <u>VisuAlgo</u>) - Go digit-by-digit in integer data. Only 10 digits, so no need to compare! Counting Sort (<u>Wikipedia</u>)

Bucket Sort (Wikipedia)

External Sorting Algorithms (<u>Wikipedia</u>) - For big data[™]

But Don't Take it From Me...

Here are some excellent visualizations for the sorting algorithms we've talked about!

Comparing Sorting Algorithms

- Different Types of Input Data: https://www.toptal.com/developers/sorting-algorithms
- More Thorough Walkthrough: https://visualgo.net/en/sorting?slide=1

Comparing Sorting Algorithms

Insertion Sort:

https://www.youtube.com/watch?v=ROalU379l3U

Selection Sort:

https://www.youtube.com/watch?v=Ns4TPTC8whw

Heap Sort:

https://www.youtube.com/watch?v=Xw2D9aJRBY

Merge Sort:

https://www.youtube.com/watch?v=XaqR3G_NV oo

Quick Sort:

https://www.youtube.com/watch?v=ywWBy6J5gz

5