
Travis Ralston
Director of Standards Development - matrix.org

@travis:t2l.io | travisr@matrix.org

Interoperability & Matrix
FOSDEM 2024

1

2

But wait, there’s more

● Matthew’s mainstage talk this morning covers our DMA adventure in detail.

● DMA requires large messaging providers (“gatekeepers”) to open up their
systems for interoperability.

● Encryption must be maintained at the same level between providers.

● Messengers have three options:

1. Become multi-headed, like Beeper Mini.

2. Create a client-side bridge app to proxy between services.

3. Speak a common protocol.

● We’ve spent the last year working on Option 3.

● Oh, and the DMA starts coming into force March 7th, 2024.

https://www.beeper.com/mini
https://matrix.org/blog/2023/03/15/the-dma-stakeholder-workshop-interoperability-between-messaging-services/

3

Projects

● “More Instant Messaging Interoperability” (MIMI) working group at the IETF
is aiming to specify a standard for modern interoperable communication.

• Matrix is a frequent and direct contributor to these efforts.

• I-D.ralston-mimi-protocol receiving updates to better cover recent feedback.

● Linearized Matrix originally created as a simplified version of Matrix for use
within MIMI as an existing protocol.

• Fully compatible with the existing DAG-based Matrix network.

• Uses a linked list instead of a DAG internally.

• Ultimately rejected because it stored history, and providers don’t think that’s
required.

● Matrix itself, as a fully-featured and existing open standard for interoperable
communications, including messaging.

https://datatracker.ietf.org/doc/draft-ralston-mimi-protocol/
https://datatracker.ietf.org/doc/draft-ralston-mimi-linearized-matrix/

Parts of interop

5

Technical problem domains

DMA-style protocol interoperability requires 4 major pieces:

1. Encryption - how are we securing messages?

2. Content format - What does a message actually look like?

3. Authorization policy - who is allowed to do things?

4. Transport - surely we need to ship the messages somewhere.

Encryption & Security

Authorization Policy

Transport

Content Format

6

Room model

• Combination of encryption, authorization policy, and transport.
• Defines notion of membership/participation.
• Fanout considerations are made here.

Provider A
Clients

Provider A
Server

Provider B
Server

Provider B
Clients

Encrypted Messages

7

Briefly: Transport

• MIMI and LM have placeholder transport definitions, but both use some
form of TLS-secured HTTP.

• The upcoming I-D.ralston-mimi-protocol draft will have a better HTTP
layer, but not final still.

• MIMI prefers mTLS for authentication; [Linearized] Matrix uses the existing
signing key infrastructure already in use.

• Providers generally prefer binary instead of JSON.
• Scalability is a major consideration.
• => Transport is universally some binary-over-HTTPS mechanism.
• TBD what Matrix’s binary event format would look like. Considering

protobuf and CBOR currently.
• Binary events would start at a federation level before impacting

clients. Clients can still expect JSON initially.

8

Briefly: Authorization Policy

• MIMI does not define an authorization policy (yet).
• Role-based access control (RBAC) is extremely popular/important.

• MSC4056 (Decentralized RBAC) / MSC2812 (Roles as State Events)
• Consistency and extensibility are important to ensure providers are not

arbitrarily blocking messages.
• [Linearized] Matrix uses the existing Authorization Rules to accept events.

• https://spec.matrix.org/v1.9/rooms/v11/#authorization-rules
• => Matrix’s authorization model already exists and works.
• TBD what MIMI ends up with.

https://github.com/matrix-org/matrix-spec-proposals/pull/4056
https://github.com/matrix-org/matrix-spec-proposals/pull/2812
https://spec.matrix.org/v1.9/rooms/v11/#authorization-rules

9

Encryption

• Most messaging providers use libsignal or something Double Ratchet
flavoured.

• Matrix implemented libsignal-like Double Ratchet back in 2015 as Olm.

• Olm isn’t interoperable with libsignal … but that’s fixed with vodozemac’s
X3DH support and other similar deltas - “interolm”.

• Megolm is used for group chats, simplifying the key distribution to a
series of Olm sessions and a common group key.

• Double Ratchet relies on surrounding infrastructure to determine who to
encrypt to, and doesn’t scale well to large groups.

• Messaging providers, and Matrix, want to switch to MLS eventually.
• https://arewemlsyet.com

• MLS has a built-in idea of membership, but has no auth policy by default.

https://github.com/matrix-org/vodozemac/pull/124
https://arewemlsyet.com

10

MLS

• Specified by the IETF as RFC 9420.
• Non-cryptographer’s crash course here:

https://travisr.notion.site/MLS-Crash-Course-1d5d03ca629948c1aaf661d
1c2036681

• Has a concept of client membership using a binary tree.
• Each client receives key material for messages it has visibility on.
• Faster than Olm/Megolm in most cases.
• Clients add and remove each other at will, if left ungoverned.
• Supports extensions to add arbitrary complexity.
• Adopted and mandated by MIMI as the encryption layer.
• Decentralized environments will need DMLS or similar.

https://datatracker.ietf.org/doc/rfc9420/
https://travisr.notion.site/MLS-Crash-Course-1d5d03ca629948c1aaf661d1c2036681
https://travisr.notion.site/MLS-Crash-Course-1d5d03ca629948c1aaf661d1c2036681

11

Membership

• Users join rooms, but clients encrypt messages.
• MLS and Double Ratchet deal with clients (primarily).
• When a user joins a room, all of their clients join as well.
• => We need to synchronize membership at two levels.
• We consider users to have a participation state, and clients to have

membership. Each has their own list of entities.
• Changes to participation must be atomic, otherwise users join the crypto

state illegally.

12

MLS + Participation

• MIMI is proposing a set of new MLS extensions for persisting application
state inside the MLS group.
• https://bifurcation.github.io/ietf-mimi-protocol/draft-ralston-mimi-prot

ocol.html#name-mls-application-state-synch
• Clients propose changes to application state with AppSync MLS

proposals.
• Servers can see application state changes.
• Clients apply changes with precise order and behaviour.
• In Matrix terms, AppSync is state events stored inside MLS.

https://bifurcation.github.io/ietf-mimi-protocol/draft-ralston-mimi-protocol.html#name-mls-application-state-synch
https://bifurcation.github.io/ietf-mimi-protocol/draft-ralston-mimi-protocol.html#name-mls-application-state-synch

13

Double Ratchet + Participation

• Participation and membership are stored external to the encryption.
• In Matrix, these are m.room.member state events and device lists.
• In MIMI, these would be AppSync-shaped diffs against a static blob

shared between servers (or similar).
• Adding confirmation/security around changes is difficult, but not

impossible.
• See MSC4080 & MSC3917

• Whichever protocol, ramping from Double Ratchet to MLS is a natural
evolution of the application.

https://github.com/matrix-org/matrix-spec-proposals/pull/4080
https://github.com/matrix-org/matrix-spec-proposals/pull/3917

14

Content format

• What clients end up encrypting/decrypting when sending to each other.
• Needs to be well specified, otherwise clients don’t know what to do.
• Extensibility is required to support the infinite combinations of messaging

features.
• Server can’t verify schema because it’s encrypted - clients need to do

their own parsing and error handling.
• Should require minimal bytes and processing power to encode/decode.
• MIMI is working on their own TLS-encoded multipart MIME format

• https://datatracker.ietf.org/doc/draft-ietf-mimi-content/
• Matrix already has events with a loose schema.

• … but what if we made that schema way more extensible?

https://datatracker.ietf.org/doc/draft-ietf-mimi-content/

15

Extensible events (MSC1767)

• Uses content blocks to persist information inside an event.
• Core blocks, like text and files, are defined by the Matrix Specification.
• Other blocks are added as-needed to represent the datum.
• Clients which know the event type look for the blocks they need to render

that datum.
• Clients which don’t know the event type look for a collection of blocks

which match an event type schema they do know, then render that.
• Events typically contain a text block so they are renderable in the worst

case.
• Richness is lost the further a client falls back, but this is better than the

user being left out of the conversation.

https://github.com/matrix-org/matrix-spec-proposals/blob/main/proposals/1767-extensible-events.md

16

Extensible events

{

 // irrelevant fields not shown

 "type": "m.message",

 "content": {

 "m.text": [

 { "body": "<i>Hello world</i>", "mimetype": "text/html" },

 { "body": "Hello world" }

]

 }

}

17

Extensible events

{

 // irrelevant fields not shown - see MSC3381 for actual polls schema

 "type": "org.matrix.poll_start",

 "content": {

 "m.text": [{ "body": "What should we have for lunch? 1. Pizza 2. Poutine" }]

 "org.matrix.poll": {

 "question": "What should we have for lunch?",

 "options": ["Pizza", "Poutine"],

 }

 }

}

https://github.com/matrix-org/matrix-doc/pull/3381

18

Extensible events

• Currently JSON, could be protobuf or other binary format in future.
• More events get rendered by more clients.
• Create custom event types more easily.
• Use the content blocks which make sense for your event.
• Rapidly iterate on MSCs and new features, though at a cost of potentially

reduced interactivability in unsupported clients.
• TBD what an event types/content blocks registry might look like.

Room models

20

MIMI: Room model

• Uses a ‘hub and spoke’ fanout.
• Hub server enforces policy and distributes messages.
• Follower servers communicate through hub server whenever possible.

Provider A
Clients

Provider A
Server

(Hub)

Provider B
Server

Provider B
Clients

Encrypted Messages

Provider C
Server

Provider C
Clients

21

Linearized Matrix: Room model

• Uses a ‘hub and spoke’ fanout.
• Hub server enforces policy and distributes messages.
• Follower servers communicate through hub server whenever possible.

Provider A
Clients

Provider A
Server

(Hub)

Provider B
Server

Provider B
Clients

Encrypted Messages

Provider C
Server

Provider C
Clients

Same fanout, different objects

22

Linearized Matrix

• Uses regular Matrix events and room state.
• Uses a stripped down version of the server-to-server API.
• Uses the same authorization rules.
• Uses a linked list instead of a DAG for history (MIMI doesn’t have history).
• Can use MLS or Double Ratchet (or something else) as needed.
• Same extensibility capabilities from Matrix.
• Supports having DAG-capable servers in the same room.

23

Decentralization and DAGs

• Matrix uses a Directed Acyclic Graph (DAG) to persist events.
• Fanout is full mesh instead of hub-and-spoke.
• Conflicts in the DAG are resolved using state resolution.
• State resolution can also be used to linearize the DAG.
• Through use of a protocol converter, centralized systems can be

brought into Matrix for further routing.

Protocol conversion

25

Not bridges

• Bridges necessarily break encryption to convert to the remote network’s
encryption algorithm.
• Example: Converting Signal to Matrix (used to) require decrypting

both networks inside the bridge.
• Protocol converters do not decrypt messages. They instead translate the

envelope to the appropriate format for the remote network.
• May include translating concepts as well, such as using to-device on

Matrix instead of using room events all the time.
• Converters use the appservice API, or are a dual-stack homeserver.
• May use MSC3983 and MSC3984 to bridge cryptographic algorithm

differences, specifically querying/claiming keys on a remote network.

https://github.com/matrix-org/matrix-spec-proposals/pull/3983
https://github.com/matrix-org/matrix-spec-proposals/pull/3984

26

Matrix with protocol converters

Gatekeeper Linearized
Matrix or MIMI

Matrix <> LM/MIMI
Protocol Converter

Matrix <> Gatekeeper
Protocol Converter

Matrix clients

Gatekeeper
clients

Missing pieces

28

What we haven’t talked about

• Identity - Converting a phone number/email/name into a routable ID.
• Consent - People might want to have a bit more control over who

messages them.
• Anti-abuse - Both reporting and actual anti-spam are needed.
• Identifiers - Matrix has known-good identifiers, but MIMI wants to

consider new ones.
• Room metadata - Where does the room name go? Is it server-visible

state, or part of content format? Please use Matrix state events?
• Ordering - How guaranteed does the message order need to be? MLS

would like it to be strictly linear, but does it really need to be?

29

What’s next?

• No idea! :D
• Linearized Matrix will get updated as an MSC, maybe.
• Gatekeepers will publish their DMA plans by March 7th, 2024.
• Protocol converter concept will continue to be refined.
• MIMI continues to make progress and become refined.
• Funding the Matrix.org Foundation is a great way to support this work.

https://matrix.org/membership/

https://matrix.org/membership/

Thanks

30

Travis Ralston
Director of Standards Development - matrix.org
@travis:t2l.io | travisr@matrix.org

