Large Scale Camera Array Calibration via SfM
Capstone Paper Survey Presentation
Large Scale Camera Array Calibration via SfM
Capstone Paper Survey Presentation
Team
Advisors
3
Sanjana Gunna
Gaini Kussainova
Project Summary
4
Introduction
Dome-like structure called “Mugsy”
5
Mugsy v1
Mugsy v2
Introduction
Dome-like structure called “Mugsy”
Use case - Virtual Human (Photo realistic avatars) Generation
6
What is the problem?
Calibration of the cameras in the dome is time-consuming!
7
Mugsy v1
Mugsy v2
What is the problem?
Calibration of the cameras in the dome is time-consuming!
Extrinsics dont change (1 day - 1 week)
8
Mugsy v1
Mugsy v2
What is the problem?
Calibration of the cameras in the dome is time-consuming!
Extrinsics dont change (1 day - 1 week)
Intrinsics change!
9
Mugsy v1
Mugsy v2
Images from the Multiface Dataset
Why?
Help save time!
10
How?
Current Approach
11
Source of Images - https://openaccess.thecvf.com/content_ICCV_2017/papers/Ha_Deltille_Grids_for_ICCV_2017_paper.pdf
Deltille Grid
How?
Structure from Motion!
12
Face data
SfM
Source of Image - https://colmap.github.io/
How?
Structure from Motion!
13
Face data
SfM
Sparse Reconstruction
Motion
Parameters
(Intrinsics / Extrinsics)
Source of Image - https://colmap.github.io/
Related Works
14
Paper I
15
Wuu et al. Multiface: A Dataset for Neural Face Rendering. 10.48550/arXiv.2207.11243.
Multiface dataset
16
Mugsy v1 Mugsy v2
Source of images: https://arxiv.org/pdf/2207.11243.pdf
17
Source of images: https://arxiv.org/pdf/2207.11243.pdf
18
Source of images: https://arxiv.org/pdf/2207.11243.pdf
Capturing system
19
Mugsy v1 Mugsy v2
Source of images: https://arxiv.org/pdf/2207.11243.pdf
Dataset
20
Dataset
21
Paper II
22
Schönberger, Johannes & Frahm, Jan-Michael. (2016). Structure-from-Motion Revisited. 10.1109/CVPR.2016.445.
Incremental SfM Pipeline
23
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Incremental SfM Pipeline
24
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Shape Parameters
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Morphable Face Model Shape Weights
3D Points
Metric Rectification
P = HP
X = H-1X
Loss = Reprojection Error + Geometry Error
Refine Camera Parameters and Shape Weights
Triangulation
25
25
Sf pipeline
Morphable Face Model Shape Weights
3D Points
Metric Rectification
P = HP
X = H-1X
Loss = Reprojection Error + Geometry Error
Refine Camera Parameters and Shape Weights
Triangulation
Correspondence Search
26
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Correspondence Search
27
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Correspondence Search
28
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Correspondence Search
29
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Incremental Reconstruction
30
Input Image Data
Initialization
Image Registration
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Incremental Reconstruction
31
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Incremental Reconstruction
32
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Incremental SfM Pipeline
33
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
Next Best View Selection
34
Lepetit et al. experimentally show that the accuracy of the camera pose depends on the number of observations and their distribution in the image.
Source of images: https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf
Bundle Adjustment
35
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Feature Extraction and Matching
Incremental
SfM pipeline
Source of images: https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
36
Source of ivideo:
Paper III
37
Wang et al, Structure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation. ISPRS Journal of Photogrammetry and Remote Sensing. 147. 19-41.
Previously…
38
Input Image Data
Triangulation
Bundle Adjustment
Sparse Reconstruction + Camera Calibration Data
Image Matching
Incremental
Conventional SfM pipeline
In this paper
39
Input Image Data
Sparse Reconstruction + Camera Calibration Data
Image Matching
with k-d forest
Global Pose Estimation
Triangulation
Bundle Adjustment
Proposed SfM pipeline
Incremental
Image Matching with random k-d forest
40
Example of a k-d tree in a 2D feature space
Source of image - https://salzi.blog/2014/06/28/kd-tree-and-nearest-neighbor-nn-search-2d-case/
Global Pose Estimation
41
Relative Orientation Parameters
Rij, tij
Global Rotations
Ri
Global Translations
ti
Epipolar Graph
Source of image - https://www.researchgate.net/figure/Epipolar-graph-showing-valid-relative-orientations-between-view-pairs_fig3_224253054
Global Pose Estimation
42
Relative Orientation Parameters
Rij, tij
Global Rotations
Ri
Global Translations
ti
Epipolar Graph
C1
C2
C3
R21, t21
R32, t32
R13, t13
Source of image - https://www.researchgate.net/figure/Epipolar-graph-showing-valid-relative-orientations-between-view-pairs_fig3_224253054
Triplet Closed Loop Constraint
Outlier Removal
How does it compare?
43
*Run time is measured in seconds
Source of image - https://www.sciencedirect.com/science/article/pii/S0924271618303058
Conclusion
44
Next steps…
45
Thank you!
46