Advancing Multimodal Vision-Language Learning / Faire Progresser L'apprentissage Multimodal de la Vision et du Langage

Aishwarya Agrawal

Assistant Professor @ UdeM and Mila Research Scientist @ DeepMind (one day a week)

Multimodal AI Research (MAIR) Lab

Oscar Mañas

Saba Ahmadi

Le Zhang

Sarvjeet Singh Ghotra

Rabiul Awal

Joining in Fall this year:

Kanishk Jain

Qian Yang

P Shravan Nayak

Vision-Language Tasks

Image Captioning

"A group of young people playing a game of Frisbee."

Visual Question Answering

Q: "What is the mustache made of?"

A: "bananas"

Vision-Language Tasks

Image Retrieval

"Grey haired man in black and yellow tie."

Image Generation

"Grey haired man in black and yellow tie."

Why vision and language?

• Intuitive:

• Humans learn in multimodal settings

• Applications:

- Aid to visually impaired users
- Online shopping and organizing photos
- Grounded virtual assistants

• Scientific:

- Visual recognition
- Language understanding
- Combining information across modalities
- Visio-linguistic compositional reasoning
- Commonsense and factual knowledge reasoning

Current State of Vision-Language Research

DeepMind's Flamingo Link What breed is the dog? (\cdot) It's a Samoyed. P Is the dog running? (\cdot) No, it's sitting. P Can you describe the pose of its back legs? \bigcirc The back legs are bent and the dog is sitting on P its haunches.

Vision-Language Progress

Vision-Language Challenges

• Out-of-distribution generalization

DeepMind

Reassessing Evaluation Practices in Visual Question Answering: A Case Study on Out-of-Distribution Generalization

Aishwarya Agrawal*^{,\$} Nematzadeh^{*,\$} lvana Kajić*

*

Emanuele Bugliarello* Elnaz

Anita

Aida

Davoodi[^]

Gergely[^]

Phil Blunsom

EACL 2023

denote equal contribution, ^{\$} denotes equal senior contribution

Experimental Setup Datasets

VQAv2 (Goyal et al., 2017)

VG (Krishna et al., 2017)

Q: What is the color of the hydrant?

A1: orange A2: yellow A3: orange [...] Q: What are these zebras doing?

A: Eating

VizWiz (Gurari et al., 2018)

Q: What is the large container made of?

A: cardboard

Q: Please fully describe what you see in this image, thank you.

A1: bird cage bottles paper towels A2: birdcage cleaning supplies A3: unanswerable [...]

Experimental Setup Models

• Two representative, widely-used pretrained models achieving strong performance in V&L tasks:

[CLS]

• Total: 128 experiments

IID vs OOD performance

• Large drop in performance for OOD evaluation

Potential factors causing poor OOD generalization: A qualitative analysis

- Poor reasoning skills (logical, spatial, compositional)
 E.g., "Is the cheese to the right or to the left of the empty plate?"
- Overfitting to answer priors
 E.g., "What is the skateboarder wearing to protect his head?" → "helmet"
- Overfitting to question format
 E.g., "What animal ... ?", "What kind of animal ... ?" (GQA)
 45% accuracy drop
 "Who is ... ?", "What is ... ?" (VG)

Vision-Language Challenges

- Out-of-distribution generalization
- Data-efficient adaptation to new tasks

Data-efficient adaptation to new tasks

- If a model can *caption images* (VL task-1), can we adapt it to *answer questions about images* (VL task-2) with *few examples*?
- Can we use few-shot capabilities of *pre-trained language models* such as GPT-3?

Oscar Mañas

Pau Rodriguez*

Nematzadeh

Yash

Goval

Aishwarya Agrawal

EACL 2023

Goal: Adapt pre-trained language model for visual inputs

What existing approaches do

- Finetune the entire language model [Dai et al. 2022, Hao et al. 2022]
- Insert and train adapter layers in the language model [<u>Eichenberg et al.</u> <u>2021</u>, <u>Alayrac et al. 2022</u>]
- Learn vision encoder from scratch [Tsimpoukelli et al. 2021]

Issues with existing approaches:

- Large number of trainable parameters (~40M to ~10B)
- Inserting adapter layers is not straightforward
- Learning vision encoder from scratch does not scale well with larger vision encoders

What we propose

- Reuse large pre-trained unimodal models while keeping them completely frozen and free of adapter layers
- Learn a lightweight mapping between the representation spaces of pretrained unimodal models.

Benefits of our approach:

- Orders of magnitude fewer parameters
- Can be trained in just a few hours
- Uses modest computational resources and public datasets
- Modular, hence easily extensible to newer/better pretrained unimodal models

MAPL *****: method

MAPL *****: method

MAPL : inference

0-shot image captioning.

2-shot VQA.

MAPL# : experimental results

- MAPL achieves **superior or competitive** performance compared to similar methods while training orders of magnitude **fewer parameters**.
- MAPL is **more effective** than the baseline in **low-data** settings.

	Trainable	Training	n-shot VQAv2			n-shot OK-VQA			n-shot TextVQA			n-shot VizWiz-VQA			n-shot Overall		
	params	examples	0	4	8	0	4	8	0	4	8	0	4	8	0	4	8
	1	1	11			1	Exis	ting met	hods usi	ing dom	ain-agn	ostic tra	ining		1		
Frozen	40.3M [†]	3.3M	29.50	38.20	-	5.90	12.60	-	-	-	-	- 1	-	-	-	-	-
MAGMA CC12M	243M [†]	3.8M	36.90	45.40	-	13.90	23.40	-	-	-	-	5.60	10.60	-	-	-	-
VLKD CC3M	406M	3.3M	38.60	-	-	10.50	-	-	-	-	-	-	-	-	-	12	-
Flamingo	10.2B	>2.1B		-		50.60	57.40	57.50	35.00	36.50	37.30		-				-
	1	100% domain-agnostic training															
MAPL-blind _{CC-clean}	3.4M	374K	20.62	35.01	35.11	4.84	14.68	14.28	3.68	5.43	5.82	3.18	8.65	9.55	8.08	15.94	16.19
Frozen* _{CC-clean}	40.3M	374K	25.98	37.80	38.52	5.51	18.86	19.91	5.11	6.15	6.30	4.33	11.28	16.68	10.23	18.52	20.35
MAPL _{CC-clean}	3.4M	374K	33.54	45.13	45.21	13.84	24.25	23.93	8.26	8.88	8.77	11.72	18.46	19.52	16.84	24.18	24.36
	1	1% domain-agnostic training															
Frozen* CC-clean	40.3M	3.7K	26.22	36.69	37.41	5.50	18.76	20.51	5.71	7.19	7.53	3.83	11.71	16.66	10.31	18.58	20.53
MAPL _{CC-clean}	3.4M	3.7K	30.80	37.38	37.95	8.77	18.18	19.15	6.40	7.07	7.74	5.68	9.26	10.58	12.91	17.97	18.85
		100% in-domain training															
PICa*	0	0	20.61	46.86	47.80	11.84	31.28	33.07	-	-	-	- 1	-	-	-	-	-
Frozen* coco	40.3M	414K	32.09	38.90	39.42	9.81	20.72	21.83	7.54	6.82	6.74	5.87	12.07	17.35	13.82	19.63	21.33
Frozen* TextCaps	40.3M	103K	32.49	37.39	38.03	11.34	19.87	20.82	8.83	7.33	7.51	6.25	12.26	16.86	14.73	19.21	20.80
Frozen* VizWiz	40.3M	110K	26.93	37.38	37.91	5.85	19.12	20.64	6.38	7.44	7.47	5.57	13.06	18.06	11.18	19.25	21.02
MAPL COCO	3.4M	414K	43.51	48.75	48.44	18.27	31.13	31.63	10.99	11.10	11.08	14.05	17.72	19.18	21.70	27.17	27.58
MAPL TextCaps	3.4M	103K	38.83	43.34	43.43	16.33	25.07	25.92	22.27	19.53	19.75	12.31	16.69	18.18	22.43	26.15	26.82
MAPL VizWiz	3.4M	110K	32.80	42.94	43.20	11.70	24.91	25.73	9.27	10.36	10.23	10.42	20.63	23.10	16.05	24.71	25.56
	1% in-domain training														1		
Frozen* COCO	40.3M	4.1K	30.18	37.23	37.89	9.33	19.60	20.71	7.43	7.65	7.67	4.37	12.00	16.48	12.83	19.12	20.69
Frozen* TextCaps	40.3M	1.0K	32.09	36.72	37.25	10.75	18.85	19.51	8.17	7.57	7.28	5.39	11.79	16.20	14.10	18.73	20.06
Frozen* VizWiz	40.3M	1.1K	29.62	37.30	37.87	7.57	19.36	20.60	7.16	7.17	7.25	4.53	12.51	17.56	12.22	19.08	20.82
MAPL COCO	3.4M	4.1K	37.69	40.42	40.84	13.92	21.66	22.41	8.30	6.96	6.84	6.94	10.72	12.43	16.71	19.94	20.63
MAPL TextCaps	3.4M	1.0K	33.57	36.70	36.87	12.46	17.45	18.21	9.34	8.29	8.62	6.54	9.58	11.62	15.48	18.00	18.83
MAPL VizWiz	3.4M	1.1K	31.88	36.81	37.04	9.59	17.64	17.64	7.25	5.99	6.04	4.73	9.48	11.33	13.36	17.48	18.01

ArXiv: https://arxiv.org/abs/2210.07179

MAPL# : qualitative results

Slide credits: Oscar Mañas

Vision-Language Challenges

- Out-of-distribution generalization
- Data-efficient adaptation to new tasks

Thanks! Questions?