
Lecture 14: Heap
Percolations

CSE 373 Data Structures and
Algorithms

1CSE 373 20 SP – CHAN & CHAMPION

Warm Up

8

9 10

2

9 11

5

4 7

1

22

36 47

2

4

8 9 10

3

1

5

Valid Invalid Invalid

Are the following trees valid min
heaps?

Announcements
 P2 due today!

 EX3 due Friday
 Simulated Midterm out this Friday

Designs due Monday at 12pm (NOT AM)
Design Reviews due Wednesday at 11:59pm

 NO LATE ASSIGNMENTS ACCEPTED

3CSE 373 22SP – CHAMPION

4

Your toolbox so far…

-ADT
-List – flexibility, easy movement of elements within structure

-Stack – optimized for first in last out ordering

-Queue – optimized for first in first out ordering

-Dictionary (Map) – stores two pieces of data at each entry

-Priority Queue - optimized for highest priority out first

-Data Structure Implementation
-Array – easy look up, hard to rearrange

-Linked Nodes – hard to look up, easy to rearrange

-Hash Table – constant time look up, no ordering of data

-BST – efficient look up, possibility of bad worst case

-AVL Tree – efficient look up, protects against bad worst case, hard to implement

-Heap - efficient for Min or Max values

CSE 373 22 SP – CHAMPION

Priority Queue / heaps roadmap

 - PriorityQueue ADT

 - PriorityQueue implementations with current toolkit

 - Binary Heap idea + invariants

 - Binary Heap methods

 - Binary Heap implementation details

Implementing peekMin()

CSE 373 SP 18 - KASEY CHAMPION 6

4

5 8

7

10

2

9

11 13

Implementing removeMin()

CSE 373 SP 18 - KASEY CHAMPION 7

4

5 8

7

10

2

9

11 13

Runtime:
Locating min = O(1)
Fixing heap = ?

-Removing overallRoot creates a gap

-Replacing with one of its children
causes lots of gaps

-What node can we replace with
overallRoot that wont cause any
gaps?

4

5 8

7

10

13

9

11

Structure invariant restored, heap invariant
broken

1.) Return min
2.) replace with bottom level right-most
node

Implementing removeMin() - percolateDown

CSE 373 SP 18 - KASEY CHAMPION 8

Runtime:
Locating min = O(1)
Fixing heap = ?

-Removing overallRoot creates a gap

-Replacing with one of its children
causes lots of gaps

-What node can we replace with
overallRoot that wont cause any
gaps?

4

5 8

7

10

13

9

11

4

135

13

13

11

Recursively swap parent with smallest child
until parent is smaller than both children
(or we’re at a leaf).

3.) percolateDown()

Structure invariant restored, heap invariant restored

What’s the worst-case running time?
Have to:
1. Find last element
2. Move it to top spot
3. Swap until invariant restored
(how many times do we have to swap?)

this is why we want to keep the
height of the tree small! The
height of these tree structures
(BST, AVL, heaps) directly
correlates with the worst case
runtimes

Practice: removeMin()

CSE 373 SP 18 - KASEY CHAMPION 9

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

1.) Remove min node
2.) replace with bottom level right-most
node
3.) percolateDown - Recursively swap
parent with smallest child
until parent is smaller than both children
(or we’re at a leaf).

 Why does percolateDown swap with the smallest child instead of just any child?

 If we swap 13 and 7, the heap invariant isn’t restored!

 7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.

4

5 8

7

10

13

9

11

Important note about heap invariant

Implementing add()
 add() Algorithm:
-Insert a node on the bottom
level that ensure no gaps

-Fix heap invariant by percolate
UP

 i.e. swap with parent,
 until your parent is
 smaller than you
 (or you’re the root).

CSE 373 19 SP - KASEY CHAMPION 11

4

5 8

7

10

2

9

11 13 3

3

8

3

4

Worst case runtime is similar to removeMin and percolateDown –
might have to do log(n) swaps, so the worst-case runtime is Theta(log(n))

Practice: Building a minHeap
 Construct a Min Binary Heap by adding the following values in this order:

 5, 10, 15, 20, 7, 2

CSE 373 SP 18 - KASEY CHAMPION 12

Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely filling each

level before creating a new one

10

20 7

15

2

5

percolateUp!

7

10

percolateUp!

2

15

percolateUp!

2

5

Add() Algorithm:
- 1.) Insert a node on the

bottom level that ensures no
gaps

- 2.)Fix heap invariant by
percolate UP

i.e. swap with parent,
until your parent is
smaller than you
(or you’re the root).

minHeap runtimes
 removeMin():
- remove root node
-Find last node in tree and swap to top level
-Percolate down to fix heap invariant

CSE 373 SP 18 - KASEY CHAMPION 13

 add():
- Insert new node into next available spot
-Percolate up to fix heap invariant

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 14

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

We map our binary-tree
representation of a heap into an
array implementation where you
fill in the array in level-order from
left to right.

The array implementation of a
heap is what people actually
implement, but the tree drawing is
how to think of it conceptually.
Everything we’ve discussed about
the tree representation still is true!

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 15

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum
node?

How do we find the last node?

How do we find the next open
space?

How do we find a node’s left child?

How do we find a node’s right
child?

How do we find a node’s parent?

Implement Heaps with an array

CSE 373 19 SP - KASEY CHAMPION 16

I

A

B

D

H

C

K

E

J

F

L

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13

/ A B C D E F G H I J K L

Fill array in level-order from left to right

How do we find the minimum
node?

How do we find the last node?

How do we find the next open
space?

How do we find a node’s left child?

How do we find a node’s right
child?

How do we find a node’s parent?

Heap Implementation Runtimes

CSE 373 SP 22 -CHAMPION 17

E

A

B

D

C

F

0 1 2 3 4 5 6 7

A B C D E F

Implementation add removeMin Peek

Array-based heap worst: 𝚹(log n)
in-practice: 𝚹(1)

worst: 𝚹(log n)
in-practice: 𝚹(log n)

𝚹(1)

We’ve matched the asymptotic worst-case behavior of
AVL trees.

But we’re actually doing better!

● The constant factors for array accesses are better.
● The tree can be a constant factor shorter because of

stricter height invariants.
● In-practice case for add is really good.
● A heap is MUCH simpler to implement.

Are heaps always better? AVL vs Heaps
 - The really amazing things about heaps over AVL implementations are the constant
factors (e.g. 1.2n instead of 2n) and the sweet sweet Theta(1) in-practice `add` time.

 - The really amazing things about AVL implementations over heaps is that AVL trees are
absolutely sorted, and they guarantee worst-case be able to find (contains/get) in
Theta(log(n)) time.

 If heaps have to implement methods like contains/get/ (more generally: finding a
particular value inside the data structure) – it pretty much just has to loop through the
array and incur a worst case Theta(n) runtime.
 Heaps are stuck at Theta(n) runtime and we can’t do anything more clever…. aha, just
kidding.. unless…?

AVL vs Heaps: Good For Different Situations

HEAPS AVL TREES

• removeMin: much
better constant factors
than AVL Trees, though
asymptotically the same

• add: in-practice, sweet
sweet Θ(1) (few swaps
usually required)

• get, containsKey:
worst-case (log n) time
(unlike Heap, which has
to do a linear scan of the
array)

PriorityQueue Map/Set

Project 3

 Build a heap! Alongside hash maps, heaps are one
of the most useful data structures to know – and pop
up many more times this quarter!
-You’ll also get practice using multiple data structures together
to implement an ADT!

-Directly apply the invariants we’ve talked so much about in
lecture! Even has an invariant checker to verify this (a great
defensive programming technique!)

MIN PRIORITY QUEUE ADT

removeMin() – returns the element
with the smallest priority, removes it
from the collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove
the element with the smallest priority

add(value) – add a new element to
the collection

changePriority(item, priority) –
update the priority of an element
contains(item) – check if an element
exists in the priority queue

Project 3 Tips
 Project 3 adds changePriority and contains to the
PriorityQueue ADT, which aren’t efficient on a heap alone
 You should utilize an extra data structure for
changePriority!
-Doesn’t affect correctness of PQ, just runtime. Please use a built-in
Java collection instead of implementing your own (although you could
in theory).

 changePriority Implementation Strategy:
- implement without regards to efficiency (without the extra data
structure) at first

-analyze your code’s runtime and figure out which parts are inefficient
- reflect on the data structures we’ve learned and see how any of them
could be useful in improving the slow parts in your code

MIN PRIORITY QUEUE ADT

removeMin() – returns the element
with the smallest priority, removes it
from the collection

State

Behavior

Set of comparable values (ordered
based on “priority”)

peekMin() – find, but do not remove
the element with the smallest priority

add(value) – add a new element to
the collection

changePriority(item, priority) –
update the priority of an element
contains(item) – check if an element
exists in the priority queue

More Priority Queue Operations

More Operations
 Min Priority Queue ADT

removeMin() – returns the
element with the smallest priority,
removes it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not
remove the element with the
smallest priority

add(value) – add a new
element to the collection

Even More Operations

CSE 332 - SU 18 ROBBIE WEBER 24

BuildHeap Running Time

CSE 332 - SU 18 ROBBIE WEBER 25

BuildHeap Running Time (again)

CSE 332 - SU 18 ROBBIE WEBER 26

Can We Do Better?

Floyd’s buildHeap algorithm

CSE 373 SP 18 - KASEY CHAMPION 28

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

2. percolateDown(parent) starting at last
index

Floyd’s buildHeap algorithm

CSE 373 SP 22 - CHAMPION 29

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 15 7 6

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7

10

7 10

Floyd’s buildHeap algorithm

CSE 373 SP 22 - CHAMPION 30

8

12

5

3

4

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15,
7, 6

12 5 11 3 102 9

7

10

2

11

3

5 6

11

keep percolating down
 like normal here and swap 5 and 4

2 1153 6 11

Floyd’s buildHeap algorithm

CSE 373 SP 22 - CHAMPION 31

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 157 6

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9

7

10

23

4

2

12

6

11

Floyd’s buildHeap algorithm

CSE 373 SP 22 - CHAMPION 32

8

12

5

3

5

11

7

10

15

2

6

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 8 1576

1. Add all values to back of array
2. percolateDown(parent) starting at last

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9

7

10

23

4

2

6

1112

6

11

Is It Really Faster?

++

Floyd’s buildHeap runs in O(n)
time!

much of
the work

a little
less

a little
less

barely
anything

Optional Slide Floyd’s buildHeap Summation

Infinite geometric series

 find a pattern -> powers of
2

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.

Even More Operations
 These operations will be useful in a few weeks…
 IncreaseKey(element,priority) Given an element of the heap and a new,
larger priority, update that object’s priority.
 DecreaseKey(element,priority) Given an element of the heap and a new,
smaller priority, update that object’s priority.
 Delete(element) Given an element of the heap, remove that element.

 Should just be going to the right spot and percolating…

 Going to the right spot is the tricky part.

 In the programming projects, you’ll use a dictionary to find an element quickly.

CSE 332 - SU 18 ROBBIE WEBER 35

