
Lecture 14: Heap 
Percolations

CSE 373 Data Structures and 
Algorithms
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heaps?



Announcements
 P2 due today!
 
 EX3 due Friday
 Simulated Midterm out this Friday 

Designs due Monday at 12pm (NOT AM)
Design Reviews due Wednesday at 11:59pm

 NO LATE ASSIGNMENTS ACCEPTED
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Your toolbox so far…

-ADT
-List – flexibility, easy movement of elements within structure

-Stack – optimized for first in last out ordering

-Queue – optimized for first in first out ordering

-Dictionary (Map) – stores two pieces of data at each entry

-Priority Queue - optimized for highest priority out first

-Data Structure Implementation
-Array – easy look up, hard to rearrange

-Linked Nodes – hard to look up, easy to rearrange

-Hash Table – constant time look up, no ordering of data

-BST – efficient look up, possibility of bad worst case

-AVL Tree – efficient look up, protects against bad worst case, hard to implement

-Heap - efficient for Min or Max values
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Priority Queue / heaps roadmap

 - PriorityQueue ADT

 - PriorityQueue implementations with current toolkit

 - Binary Heap idea + invariants

 - Binary Heap methods

 - Binary Heap implementation details



Implementing peekMin()
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Implementing removeMin()
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Runtime:
Locating min = O(1)
Fixing heap = ?

-Removing overallRoot creates a gap

-Replacing with one of its children 
causes lots of gaps

-What node can we replace with 
overallRoot that wont cause any 
gaps?
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Structure invariant restored, heap invariant 
broken

1.) Return min 
2.) replace with bottom level right-most 
node 



Implementing removeMin() - percolateDown
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Runtime:
Locating min = O(1)
Fixing heap = ?

-Removing overallRoot creates a gap

-Replacing with one of its children 
causes lots of gaps

-What node can we replace with 
overallRoot that wont cause any 
gaps?
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Recursively swap parent with smallest child
until parent is smaller than both children 
(or we’re at a leaf).

3.) percolateDown()

Structure invariant restored, heap invariant restored

What’s the worst-case running time?
Have to:
1. Find last element
2. Move it to top spot
3. Swap until invariant restored
(how many times do we have to swap?)

this is why we want to keep the 
height of the tree small! The 
height of these tree structures 
(BST, AVL, heaps) directly 
correlates with the worst case 
runtimes



Practice: removeMin()
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1.) Remove min node
2.) replace with bottom level right-most 
node
3.) percolateDown - Recursively swap 
parent with smallest child
until parent is smaller than both children 
(or we’re at a leaf).
 



 Why does percolateDown swap with the smallest child instead of just any child?

 If we swap 13 and 7, the heap invariant isn’t restored! 

 7 is greater than 4 (it’s not the smallest child!) so it will violate the invariant.
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Important note about heap invariant



Implementing add()
 add() Algorithm:
-Insert a node on the bottom 
level that ensure no gaps

-Fix heap invariant by percolate 
UP

 i.e. swap with parent, 
 until your parent is 
 smaller than you
 (or you’re the root).
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Worst case runtime is similar to removeMin and percolateDown – 
might have to do log(n) swaps, so the worst-case runtime is Theta(log(n))



Practice: Building a minHeap
 Construct a Min Binary Heap by adding the following values in this order:

 5, 10, 15, 20, 7, 2
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Min Binary Heap Invariants
1. Binary Tree – each node has at most 2 children
2. Min Heap – each node’s children are larger than itself
3. Level Complete - new nodes are added from left to right completely filling each 

level before creating a new one
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Add() Algorithm:
- 1.) Insert a node on the 

bottom level that ensures no 
gaps

- 2. )Fix heap invariant by 
percolate UP

i.e. swap with parent, 
until your parent is 
smaller than you
(or you’re the root).



minHeap runtimes
 removeMin():
- remove root node
-Find last node in tree and swap to top level
-Percolate down to fix heap invariant
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 add():
- Insert new node into next available spot
-Percolate up to fix heap invariant

 



Implement Heaps with an array
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Fill array in level-order from left to right

We map our binary-tree 
representation of a heap into an 
array implementation where you 
fill in the array in level-order from 
left to right.

The array implementation of a 
heap is what people actually 
implement, but the tree drawing is 
how to think of it conceptually.   
Everything we’ve discussed about 
the tree representation still is true!



Implement Heaps with an array
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Fill array in level-order from left to right

How do we find the minimum 
node?

How do we find the last node?

How do we find the next open 
space?

How do we find a node’s left child?

How do we find a node’s right 
child?

How do we find a node’s parent?

 

 

 

 

 

 



Implement Heaps with an array
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Fill array in level-order from left to right

How do we find the minimum 
node?

How do we find the last node?

How do we find the next open 
space?

How do we find a node’s left child?

How do we find a node’s right 
child?

How do we find a node’s parent?



Heap Implementation Runtimes
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Implementation add removeMin Peek

Array-based heap worst: 𝚹(log n)
in-practice: 𝚹(1)

worst: 𝚹(log n)
in-practice: 𝚹(log n)

𝚹(1)

We’ve matched the asymptotic worst-case behavior of 
AVL trees. 

But we’re actually doing better!

● The constant factors for array accesses are better.
● The tree can be a constant factor shorter because of 

stricter height invariants.
● In-practice case for add is really good.
● A heap is MUCH simpler to implement. 



Are heaps always better? AVL vs Heaps
 - The really amazing things about heaps over AVL implementations are the constant 
factors (e.g. 1.2n instead of 2n) and the sweet sweet Theta(1) in-practice `add` time.

 - The really amazing things about AVL implementations over heaps is that AVL trees are 
absolutely sorted, and they guarantee worst-case be able to find (contains/get) in 
Theta(log(n)) time.

 If heaps have to implement methods like contains/get/ (more generally: finding a 
particular value inside the data structure) – it pretty much just has to loop through the 
array and incur a worst case Theta(n) runtime. 
 Heaps are stuck at Theta(n) runtime and we can’t do anything more clever…. aha, just 
kidding.. unless…?



AVL vs Heaps: Good For Different Situations

HEAPS AVL TREES

• removeMin: much 
better constant factors 
than AVL Trees, though 
asymptotically the same

• add: in-practice, sweet 
sweet Θ(1) (few swaps 
usually required)

• get, containsKey: 
worst-case (log n) time 
(unlike Heap, which has 
to do a linear scan of the 
array)

PriorityQueue Map/Set



Project 3

 Build a heap! Alongside hash maps, heaps are one 
of the most useful data structures to know – and pop 
up many more times this quarter!
-You’ll also get practice using multiple data structures together 
to implement an ADT!

-Directly apply the invariants we’ve talked so much about in 
lecture! Even has an invariant checker to verify this (a great 
defensive programming technique!)

MIN PRIORITY QUEUE ADT

removeMin() – returns the element 
with the smallest priority, removes it 
from the collection

State

Behavior

Set of comparable values (ordered 
based on “priority”)

peekMin() – find, but do not remove 
the element with the smallest priority

add(value) – add a new element to 
the collection

changePriority(item, priority) – 
update the priority of an element
contains(item) – check if an element 
exists in the priority queue



Project 3 Tips
 Project 3 adds changePriority and contains to the 
PriorityQueue ADT, which aren’t efficient on a heap alone
 You should utilize an extra data structure for 
changePriority!
-Doesn’t affect correctness of PQ, just runtime. Please use a built-in 
Java collection instead of implementing your own (although you could 
in theory).

 changePriority Implementation Strategy:
- implement without regards to efficiency (without the extra data 
structure) at first

-analyze your code’s runtime and figure out which parts are inefficient
- reflect on the data structures we’ve learned and see how any of them 
could be useful in improving the slow parts in your code

MIN PRIORITY QUEUE ADT

removeMin() – returns the element 
with the smallest priority, removes it 
from the collection

State

Behavior

Set of comparable values (ordered 
based on “priority”)

peekMin() – find, but do not remove 
the element with the smallest priority

add(value) – add a new element to 
the collection

changePriority(item, priority) – 
update the priority of an element
contains(item) – check if an element 
exists in the priority queue



More Priority Queue Operations



More Operations
  Min Priority Queue ADT

removeMin() – returns the 
element with the smallest priority, 
removes it from the collection

state

behavior

Set of comparable values
- Ordered based on “priority”

peekMin() – find, but do not 
remove the element with the 
smallest priority

add(value) – add a new 
element to the collection



Even More Operations
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BuildHeap Running Time
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BuildHeap Running Time (again)
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Can We Do Better?
  



Floyd’s buildHeap algorithm
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1. Add all values to back of array

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

2.  percolateDown(parent) starting at last 
index



Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last 

index
1. percolateDown level 4
2. percolateDown level 3

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 5 11 3 10 2 9

7
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7 10



Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last 

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 
7, 6

12 5 11 3 102 9
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5 6

11

keep percolating down
 like normal here and swap 5 and 4

2 1153 6 11



Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last 

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

12 4 113 102 9
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Floyd’s buildHeap algorithm
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1. Add all values to back of array
2. percolateDown(parent) starting at last 

index
1. percolateDown level 4
2. percolateDown level 3
3. percolateDown level 2
4. percolateDown level 1

Build a tree with the values:
12, 5, 11, 3, 10, 2, 9, 4, 8, 15, 7, 6

124 113 102 9
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Is It Really Faster?
  

++

Floyd’s buildHeap runs in O(n) 
time!

much of 
the work

a little 
less

a little 
less

barely 
anything



Optional Slide  Floyd’s buildHeap Summation

  

 

   

Infinite geometric series

 

  find a pattern -> powers of 
2

 

? = upper limit should give last term

Floyd’s buildHeap runs in O(n) time!

Summation!

We don’t have a summation for this! Let’s make it look more like a summation we do know.



Even More Operations
 These operations will be useful in a few weeks…
 IncreaseKey(element,priority) Given an element of the heap and a new, 
larger priority, update that object’s priority.
 DecreaseKey(element,priority) Given an element of the heap and a new, 
smaller priority, update that object’s priority.
 Delete(element) Given an element of the heap, remove that element.

 Should just be going to the right spot and percolating…

 Going to the right spot is the tricky part.

 In the programming projects, you’ll use a dictionary to find an element quickly.
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