�
Data Mining_Anoop Chaturvedi
1
Swayam Prabha
Course Title
Multivariate Data Mining- Methods and Applications
Lecture 21
McCulloch- Pitts Neuron and Single-Layer Perceptron
By
Anoop Chaturvedi
Department of Statistics, University of Allahabad
Prayagraj (India)
Slides can be downloaded from https://sites.google.com/view/anoopchaturvedi/swayam-prabha
Data Mining_Anoop Chaturvedi
2
Data Mining_Anoop Chaturvedi
3
Data Mining_Anoop Chaturvedi
4
Σ
θ
Data Mining_Anoop Chaturvedi
5
Data Mining_Anoop Chaturvedi
6
Data Mining_Anoop Chaturvedi
7
Data Mining_Anoop Chaturvedi
8
Limitations of McCullock-Pitts neuron
Data Mining_Anoop Chaturvedi
9
Hebb Learning Rule of Neuron Excitation:
Data Mining_Anoop Chaturvedi
10
Neural Inhibitory Rule:
Data Mining_Anoop Chaturvedi
11
Data Mining_Anoop Chaturvedi
12
Data Mining_Anoop Chaturvedi
13
Data Mining_Anoop Chaturvedi
14
| |
Data Mining_Anoop Chaturvedi
15
Different types of Artificial Neural Networks
Feedforward Neural Network
Forward propagation ⇒ Process of computing the output given an input
Backpropagation ⇒ Process of updating the weights based on the error between the predicted output and the actual output.
Data Mining_Anoop Chaturvedi
16
Convolutional Neural Network
Recurrent Neural Network
Data Mining_Anoop Chaturvedi
17
Radial basis function Neural Network
Three layers architecture:
Data Mining_Anoop Chaturvedi
18
Data Mining_Anoop Chaturvedi
19
Data Mining_Anoop Chaturvedi
20
Data Mining_Anoop Chaturvedi
21
RBF
Input
Output
RBFN has an easy design and provides a good generalization.
It is faster to train.
It has a straightforward interpretation of the functioning of each node in the hidden layer.
Data Mining_Anoop Chaturvedi
22
Modular Neural Network:
Data Mining_Anoop Chaturvedi
23
Modular Neural Network:
Data Mining_Anoop Chaturvedi
24