1 of 64

Case Study of Novelty, Complexity, and Adaptation in a Multicellular System

Matthew Andres Moreno, Santiago Rodriguez Papa, & Charles Ofria

BEACON Congress

August 19, 2021

@MorenoMatthewA

2 of 64

Fraternal Transitions in Individuality

@MorenoMatthewA

  • fraternal: kin unite to form a new self-replicating entity
  • e.g., multicellularity, eusociality

Wing-Chi Poon / CC BY-SA (https://creativecommons.org/licenses/by-sa/2.5)

3 of 64

DISHTINY Model

@MorenoMatthewA

4 of 64

@MorenoMatthewA

5 of 64

@MorenoMatthewA

6 of 64

@MorenoMatthewA

7 of 64

@MorenoMatthewA

functional consequences:

  • resource distribution
  • group expiration
  • sufficient for characteristic multicellular traits
  • (Moreno, 2019; Moreno, 2021a)

8 of 64

Case Study Data

@MorenoMatthewA

9 of 64

@MorenoMatthewA

Randomly

Generated

Ancestors

14.4k tiles

10 of 64

@MorenoMatthewA

“stint”

3 hr x

4 🧵

Randomly

Generated

Ancestors

14.4k tiles

11 of 64

@MorenoMatthewA

“stint”

3 hr x

4 🧵

Randomly

Generated

Ancestors

“stint”

3 hr x

4 🧵

“stint”3 hr x

4 🧵

…100x

~20k cell generations

14.4k tiles

12 of 64

@MorenoMatthewA

“stint”

3 hr x

4 🧵

Randomly

Generated

Ancestors

“stint”

3 hr x

4 🧵

“stint”3 hr x

4 🧵

…100x

“series”

“stint”

3 hr x

4 🧵

Randomly

Generated

Ancestors

“stint”

3 hr x

4 🧵

“stint”3 hr x

4 🧵

…100x

“series”

“stint”

3 hr x

4 🧵

Randomly

Generated

Ancestors

“stint”

3 hr x

4 🧵

“stint”3 hr x

4 🧵

…100x

“series”

“stint”

3 hr x

4 🧵

Randomly

Generated

Ancestors

“stint”

3 hr x

4 🧵

“stint”3 hr x

4 🧵

…100x

“series”

…40x

13 of 64

Results

@MorenoMatthewA

14 of 64

Part I: Qualitative Morphological Novelty

@MorenoMatthewA

15 of 64

@MorenoMatthewA

morph

phenotype

morph

phenotype

stint

0

1

2

14

15

39

45

stint

59

74

100

16 of 64

@MorenoMatthewA

stint 0

morph a

17 of 64

@MorenoMatthewA

stint 14

morph d

18 of 64

@MorenoMatthewA

stint 15

morph e

19 of 64

@MorenoMatthewA

stint 45

morph g

20 of 64

Part II: Adaptation

@MorenoMatthewA

21 of 64

22 of 64

@MorenoMatthewA

Stintwise Fitness Differential

23 of 64

@MorenoMatthewA

Stintwise Fitness Differential

24 of 64

@MorenoMatthewA

Stintwise Fitness Differential

25 of 64

Part III: “Sequence Complexity”

@MorenoMatthewA

26 of 64

Sequence Complexity (Adami, 2000) (Dolson, 2019)

@MorenoMatthewA

...

27 of 64

28 of 64

@MorenoMatthewA

Sequence Complexity

29 of 64

@MorenoMatthewA

Sequence Complexity

30 of 64

@MorenoMatthewA

Sequence Complexity

31 of 64

@MorenoMatthewA

Sequence Complexity

32 of 64

Part IV: “Interface Complexity”

@MorenoMatthewA

33 of 64

Interface

Complexity

@MorenoMatthewA

inputs

outputs

messages

34 of 64

Interface

Complexity

@MorenoMatthewA

? ? ?

how many

? ? ?

? ? ? ?

how many

? ? ? ?

? ? ? ?

how many

? ? ? ?

35 of 64

36 of 64

@MorenoMatthewA

37 of 64

@MorenoMatthewA

38 of 64

Conclusion

@MorenoMatthewA

39 of 64

Anecdotal Takeaways

@MorenoMatthewA

  • novelty, complexity, & adaptation appear loosely coupled
  • although novelty was sometimes adaptive, these innovations did not yield exceptional fitness increases
  • at times, opposite signals from “sequence complexity” and “interface complexity”

40 of 64

Future Work

@MorenoMatthewA

  • flesh out our adaptation assay
  • noncritical sequence complexity

  • sexual recombination & crossover
  • ecology

41 of 64

Acknowledgement

@MorenoMatthewA

Matthew

Santiago

Charles

Katherine Perry

42 of 64

References

@MorenoMatthewA

Ackley, David H., and Daniel C. Cannon. "Pursue robust indefinite scalability." HotOS. 2011.

Adami, Christoph, Charles Ofria, and Travis C. Collier. "Evolution of biological complexity." Proceedings of the National Academy of Sciences 97.9 (2000): 4463-4468.

Banzhaf, Wolfgang, et al. "Defining and simulating open-ended novelty: requirements, guidelines, and challenges." Theory in Biosciences 135.3 (2016): 131-161.

Dolson, Emily L., et al. "The MODES toolbox: Measurements of open-ended dynamics in evolving systems." Artificial life 25.1 (2019): 50-73.

Goldsby, Heather J., et al. "The evolutionary origin of somatic cells under the dirty work hypothesis." PLoS biology 12.5 (2014): e1001858.

Heinemann, Christian. "Artificial Life Environment." Informatik-Spektrum 31.1 (2008): 55-61.

Maynard Smith, John; Szathmáry, Eörs (1995). The Major Transitions in Evolution. Oxford, England: Oxford University Press. ISBN 978-0-19-850294-4.

Moreno, Matthew Andres, and Charles Ofria. "Toward open-ended fraternal transitions in individuality." Artificial life 25.2 (2019): 117-133.

Moreno, Matthew Andres, and Charles Ofria. "Exploring Evolved Multicellular Life Histories in a Open-Ended Digital Evolution System." arXiv preprint arXiv:2104.10081 (2021a).

Moreno, Matthew Andres, Santiago Rodriguez Papa, and Charles Ofria. "Conduit: A C++ Library for Best-effort High Performance Computing." arXiv preprint arXiv:2105.10486 (2021b).

Rocki, K., Van Essendelft, D., Sharapov, I., Schreiber, R., Morrison, M., Kibardin, V., ... & James, M. (2020, November). Fast stencil-code computation on a wafer-scale processor. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-14). IEEE.

Taylor, Tim, et al. "Open-ended evolution: Perspectives from the OEE workshop in York." Artificial life 22.3 (2016): 408-423.

43 of 64

supplement:

osf.io/gekc8/

@MorenoMatthewA

🌟

questions?

44 of 64

Computational Scalability

@MorenoMatthewA

  • Distributed Best-effort Communication Model
    • Indefinite scalability (Ackley, 2011)
    • 80% efficiency scaling to 64 nodes (Moreno et al., 2021b)
  • Systolic hardware (Rocki, 2020)
    • Cerebras CS-2, 850,000 cores

45 of 64

@MorenoMatthewA

46 of 64

@MorenoMatthewA

47 of 64

@MorenoMatthewA

48 of 64

Major Evolutionary Transitions in Individuality

@MorenoMatthewA

  • emergence of new self-replicating entities
  • formative in natural history, associated with biological complexity and diversity (Smith and Szmarthy, 1995)

49 of 64

Interface

Complexity

@MorenoMatthewA

50 of 64

Naive Approach

Messages

Inputs/Outputs

51 of 64

Interface

Complexity

@MorenoMatthewA

52 of 64

Interface

Complexity

@MorenoMatthewA

53 of 64

Filtering Out Contingency

Messages

54 of 64

Filtering Out Contingency

Messages

55 of 64

Filtering Out Contingency

Messages

Inputs/Outputs

56 of 64

Filtering Out Contingency

Messages

Inputs/Outputs

57 of 64

Filtering Out Contingency

Messages

Inputs/Outputs

58 of 64

Filtering Out Contingency

Messages

Inputs/Outputs

59 of 64

Measuring Sequence Complexity

@MorenoMatthewA

site a

nopout

wt

60 of 64

Measuring Sequence Complexity

@MorenoMatthewA

site a

nopout

wt

site a

nopout

wt

site a

nopout

wt

...

61 of 64

Measuring Sequence Complexity

@MorenoMatthewA

site a

nopout

wt

site a

nopout

wt

site a

nopout

wt

...

site b

nopout

...

site c

nopout

...

...

62 of 64

Measuring Sequence Complexity

@MorenoMatthewA

...

site a

nopout

wt vs wt controls

wt

63 of 64

Measuring Fitness: Competitions

@MorenoMatthewA

...

site a

nopout

site b

nopout

site c

nopout

...

wt

wt

wt

wt vs wt controls

64 of 64

Digital Evolution

@MorenoMatthewA

  • Deme-based model (Goldsby, 2014)

  • Unified spatial realm
    • Implicit group replication (Moreno, 2021)
    • Parent-child interactions (Moreno, 2021)

multicell

multicells can’t interact