4! RO
- J&\.
3 \‘\ N

P

Please log onto httos //edstem orq/us/courses/21257/d|scu53|on/ to submlt live
lecture questions

LeCtu re 8 : Recu rr_e n CeS CSE 373:.Data Structures
and Intro to HaShIng and Algorithms

https://edstem.org/us/courses/21257/discussion/
http://pollev.com/champk

Please fill out the Poll at- pollev.com/champk

Warm Up!

What'’s the theta bound for the runtime function for this piece of
code?

public void methodl (int n) {
if (n <= 100) {
System.out.println (“:3");

} else {
System.out.println (“:D”); Master Theorem
for (int 1 = 0; 1i<lo6; 1i++) {
methodl (n / 4); d . if n is at most some constant
} T =1 ar (—) + f(n) otherwise
) b
} constant work ifn <100 Where f(n) is ©(n)
—_— n C
T 16T (Z) + constant work otherwise If logya<c then T(n)€OMn)
If logoa=c then T(n)€ O logn)
a=16,b=4,c=0 T(n) € @(nlogb a) If log,a>c then T(n)e€ 0(n!°8r2)

log,16 = 2 2-0
@(nlog4 16) = @(nZ)

Announcements

Exercise 1 — Algorithm Analysis — Due Friday April 15%

Project 1 — Deques — Due Wednesday April 13™

Project 2 is out! Due Wednesday April 271

- 2 week assignment, PLEASE PLEASE PLEASE START NOW

For real, though, it will take you 2 weeks, do not wait until next week to start
Midterm goes out Friday April 29"

Office Hours FYI

- TAs have been instructed to only spend 15 min with each student
- Attending in person makes things go faster

- For online office hours please use the Ed board post to queue

Questions

— @ Modeling Recursive Code

Recurrence to Big-0

2 ifn<3
— n
T(n)= 2T (—) + n otherwise

3

It's still really hard to tell what the big-O is just by looking at it.

But fancy mathematicians have a formula for us to use!

Master Theorem

d if n is at most some constant
— n
T(n) aT (E) + f(n) otherwise

Where f(n) is ©(n¢)

If logyba<c then T(n)eOMn)

If logya=c then T(n)€ Onlogn)
If logya>c then T(n)e€ ©(nlosr2)

a=2b=3andc=1

y = logy, x is equal to bY = x

log;2 =x=3*=2=x =0.63

log;2 <1

We're in case 1
T(n) € O(n)

Understanding Master Theorem

The log of a < c case

Master Theorem Recursive case does a lot of non recursive work in
comparison to how quickly it divides the input size
d . if n is at most some constant Most work happens in beginning of call stack
T(n) = aT (3) + f(n) otherwise Non recursive work in recursive case dominates

growth, n®term
Where f(n) is ©(n¢)

If logya<c then T(n)e€ O Thelogofa=c

f log,a=c then T(n)€ O logn) Recursive case evenly splits work between non
recursive work and passing along inputs to

If logya>c then T(n)e O(n'°8»a) subsequent recursive calls

Work is distributed across call stack
A measures how many recursive calls are

triggered by each method instance The Iog of a > c case

B measures the rate of change for input Recursive case breaks inputs apart quickly and
C measures the dominating term of the non doesn’t do much non recursive work

recursive work within the recursive method Most work happens near bottom of call stack

D measures the work done in the base case

Recursive Patterns

Pattern #1: Halving the Input
Binary Search O(logn)

Pattern #2: Constant size input and doing work
Merge Sort

Pattern #3: Doubling the Input

Merge Sort

Divide
91 22 57 10 6 7 4
8 91 22 57 10 4
Conquer
Combine
2 22 57 91 4 10
4 6 7 10 22 57 91

Merge Sort

mergeSort (input) {
if (input.length == 1)
return
else
smallerHalf = mergeSort(new [0, ...,
mid])
largerHalf = mergeSort (new [mid + 1,

.. 1)

return merge (smallerHalf, largerHaltl)

}T(n) _ 1ifn<=1
2T(n/2) + n otherwise

Pattern #2 — Constant size input and doing work

Take a guess! What is the Big-O
of worst case merge sort?

57 91 22
57 91 22
57 91 22
91 22
\/
22 91
/
22 57 91
\/
22 57 91

Merge Sort Recurrence to Big-0

T(n) — 1 |f Nn<= 1
2T(n/2) + n otherwise

Master Theorem

d if n is at most some constant
— n
T(n) = aT (Z) + f(n) otherwise

Where f(n) is ©(n°)
If logpba<c then T(n)e€OMn)
If logoa=c then T(n)€ BN logn)
If logya>c then T(n)e€ 0(n'°8 %)

a=2b=2andc=1

y = log, x is equal to bY = x

log, 2 =x = 2* =
log,2 =1

We're in case 2
T(n) € ©(nlogn)

2=>x=1

Recursive Patterns

Pattern #1: Halving the Input
Binary Search O(logn)

Pattern #2: Constant size input and doing work
Merge Sort O(nlogn)

Pattern #3: Doubling the Input
Calculating Fibonacci

Calculating Fibonacci

public int fib(int n) {
1if (n <= 1) {
return 1;

}
return fib(n-1) + fib(n-2);

e Each call creates 2 more calls
* Each new call has a copy of the

}

input, almost
* Almost doubling the input at
each call A/’hoslc

Pattern #3 — Doubling the Input

CSE 373 20 WI - HANNAH TANG 13

Calculating Fibonacci Recurrence to Big-©

public int f (int n) { Can we use master theorem?

if (n <= 1) { o

. d
return 1; — d if n is at most some constant

} — T(n) = aT (g) + f(n) otherwise

return f£(n-1) + £ (n—Z}— 2T(n-C,) + C,
) Uh oh, our model doesn’t match that format...

Can we intuit a pattern?
dwhenn <1 T(1)=d
T(n) = : T(2) = 2T(2-1) + ¢ = 2(d
2T(n-C)) +C, otherwise (2) (2-1)+c=2(d) +c

T(3)=2T(3-1) + c=2(2(d) +c) +c=4d + 3c

T(4) =2T(4-1) + c=2(4d + 3c) + c=8d + 7c

T(5) = 2T(5-1) + c =2(8d + 7c) + c = 16d +25c¢
Looks like something’s happening but it’s tough

Finish the recurrence, what is the Maybe geometry can help!

model for the recursive case?

Calculating Fibonacci Recurrence to Big-©

How many layers in the function call tree?

How many layers will it take to transform

[»

For our example, 4 -> Height = n

T(n) = d whenn <1
~ |2T(n — 1) + c otherwise

n” to the base case of “1” by subtracting 1

How many function calls per layer?

Layer

1

Function

calls
1

2

2

3

4

How many function calls on layer k?
2k-1

How many function calls TOTAL
for a tree of k layers?

CSE 373 20 WI - HANNAH TANG 15

Calculating Fibonacci Recurrence to Big-©

Patterns found:

How many layers in the function call tree? n
How many function calls on layer k? 21

How many function calls TOTAL for a tree of k layers?
14+2+4+8+ ... +2¢
Total runtime = (total function calls) x (runtime of each function call)

Total runtime = (1 + 2 +4 + 8 + ... + 2¥) x (constant work)

k—1 " Summation ldentity
1+2+4+8+ . +2Kl= Z 20 — 2" -1 — 2k _q Finite Geometric Series
_ 2—1 k—1 "
i=1 Z ;ooxt=1
X" =
_ x—1
i=1

T(n) =2"—1 € O(2")

Recursive Patterns

Pattern #1: Halving the Input
Binary Search ©(logn)

Pattern #2: Constant size input and doing work

Merge Sort ©(nlogn)

Pattern #3: Doubling the Input
Calculating Fibonacci ©(2")

Runtime Comparison
35

30

25

20

15

== |ogn ===nplogn ===247n

Runtime Comparison
1200

1000 2

800

600

400
200 :
O _—

=== |0gn ===nplogn ===27n

Runtime Comparison
1200000000000000

1000000000000000

800000000000000

600000000000000

400000000000000

200000000000000

0

SV SR AN ANAT ISP FARNANAKNRP

we=|Ogn ===nlogn ===24n

CSE 373 20 WI - HANNAH TANG 17

Questions

CSE 373 20 SP - CHAMPION & CHUN 18

@ Intro to Hashing

Dictionaries (aka Maps)

Every Programmer’s Best Friend

You'll probably use one in almost every programming project.
Because it's hard to make a big project without needing one sooner or later.

// two types of Map implementations supposedly covered in CSE 143
Map<String, Integer> mapl = new HashMap<>();
Map<String, String> map2 = new TreeMap<>();

Maps

map: Holds a set of distinct keys and a collection
of values, where each key is associated with one
value.

a.k.a. "dictionary"

map.get ("the") 56
put(key, value): Adds a given item into KEYS VALUES
collection with associated key, Jan 327.2
state Feb 368.2
Set of items & keys if the map previously had a mapping Mar 197.6
Count of items for the given key, old value is replaced. ?Apr :(7)2-3
behavior . : 2 '
ey fem) ad e o teé(/lzgy). Retrieves the value mapped to j:ln ggg
collection indexed with key Y Aug —— | Aug 37.3 — 373
get(key) return item containsKey(key): returns true if key is Sep 19.0
associated with key already associated with value in map, Oct 37.0
contamgKev(kev) return if key false otherwise Nov 73.2
already in use Dec 110.9
remove(key) remove item and remove(key): Removes the given key and Annual 1551.0
associated key its mapped value

size() return count of items

state
Set of items & keys
Count of items
behavior
put(key, item) add item to

collection indexed with key

get(key) return item

associated with key

containsKey(key) return if key

already in use

remove(key) remove item and

associated key
size() return count of items

containsKey (‘c’)
get ('d’)
put (‘b’, 97)

ArrayMap<K, V>

Pair<K, V>[] data

put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found

remove scan all pairs, replace pair to
be removed with last pair in collection
size return count of items in dictionary

put (‘e’, 20)

(‘a’, 1)

(‘b’, 97) ('¢’, 3)

(‘d’, 4) (‘e’, 20)
| |

Implementing a Map with an Array

Big O Analysis - (if key is the last one looked at /
not in the dictionary)

put () O(N) linear
et) O(N) linear
containsKey () ON) linear
remove () O(N) linear
size ()

O(1) constant

Big O Analysis - (if the key is the first one looked at)
put ()

get ()

O(1) constant

O(1) constant

containskey () O(1) constant

ECHOVE (O(1) constant

size () O(1) constant

state

Set of items & keys
Count of items

behavior

put(key, item) add item to

collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item and
associated key

size() return count of items

containsKey (‘'c’)
get ('d’)
put (‘b’, 20)

LinkedMap<K, V>

front
size

put if key is unused, create new with
pair, add to front of list, else
replace with new value

get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found

remove scan all pairs, skip pair to be
removed

front

size return count of items in
dictionary
\a/ 1 \b’ m \c, 9 ‘d’

Implementing a Map with Nodes

Big O Analysis - (if key is the last one looked
at / not in the dictionary)

put () O(N) linear
get () O(N) linear
containsKey () O(N) linear
remove () O(N) linear
size () O(1) constant

Big O Analysis - (if the key is the first one look

at)
put () O(1) constant

get () O(1) constant

containsKey () O(1) constant

remove () O(1) constant

size () O(1) constant

Can we do better?

Let’s simplify the problem we’re working with + combine it with some facts about arrays.

Problem Simplification: only worry about supporting integer keys

Array Facts: accessing (data [1]) or updating an element (data[i] = ..)atagiven
index takes Theta (1) runtime.

If we store the Key-Value pairs at the data [key] then we don’t have to do any looping
to find it. For example consider ‘containsKey or ‘get -- we can just jump directly to
data [key] to figure out the return answer.

DirectAccessMap<Integer, V>

Datal]
size

put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return
true otherwise

remove nullify element at index
size return count of items in
dictionary

(3, Sherdil)
data

put (3, “Sherdil”);
get (3);

24

Can we do better? -- Direct Access Map impl.

public void put (int key, V value) {
this.arrayl[key] = value;
}

public boolean containsKey(int key) {
return this.arrayl[key] != null;
}

public V get(int key) {

return this.arraylkey];
}

DirectAccessMap<Integer, V>

Datal]
size

put put item at given index

get get item at given index
containsKey if data[] null at
index, return false, return true
otherwise

remove nullify element at index
size return count of items in
dictionary

public void remove (int key) | Operation Array w/ indices as keys

this.arraylkey] = null; best o(1)
} put(key,value)
worst o(1)
best o(1)
get(key)
worst o(1)
best o(1)
containsKey(key)
worst o(1)

25

Direct Access Map tradeoffs:

- what’s a benefit of using DirectAccessMap?
- what’s a bad thing when using DirectAccessMap?

= ® wasted space
what if we want to store two key: 0 and 999999999997 Our current setup would just be wasting all that array space
in-between

= ® only integer keys
kind of annoying that we could only have this for ints, but being able to quickly go from the key to the array index is
super valuable because it’s array lookups are fast (constant time). When we can just jump to the right position, we
avoid the looping that ArrayMap/LinkedMap had to do where you might have to loop and look at every element.
We’'ll keep this core idea of "knowing the index” and jumping there right away for all the versions of the dictionaries

we talk about today.

= © super fast though: ®(1) runtime for everything

Can we do this for any integer?

Create a GIANT array with every possible
integer as an index

Problems: :
Can we allocate an array big enough? 900007 [oo |
Super wasteful /)

]

Create a smaller array, but create a way to
translate given integer keys into available
indices. Way less wasteful space-wise.

5000

202

Problem:
How can we pick a good translation?

900007

900007

CSE 373 SU 19 - ROBBIE WEBER 27

Hash functions: translating a piece of data to an int

Hash function definition

A hash function is any function that can be used to map data of arbitrary size to fixed-size values.

In our case: we want to translate int keys to a valid index in our array. If our array is length
10 but our input kea/ is 500, we need to make sure we have a way ot mapping that to a
number between O and 9 (the valid indices for a length 10 array)” This mapping that we
decide on is a hash function.

One simple thing we can do (and that you will do when you implement this in your project):
Hash function: take your key and % it by the length of the array.

ex: key is 500, and array is length 10 - ifoyou take 500 % 10, you will get the number O, so
we'd just plop 500 and it’s value at index O.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

‘review : Integer remainder with % "mod”

The % operator computes the remainder from integer division.

14 % 4 is 2 218 % 5 is 3 .)
. 43 Equlnvalently, tofinda % b (for a,b > 0):
4) 14 5) 218 while(a > b-1)
12 20 a —-= b;
2 18)
15 return a;
3

Applications of % operator:
Obtain last digit of a number: 230857 % 10is 7

See whether a numberisodd: 7 % 2is1, 42 % 2is0

o . . . Limit keys to indi
Limit integers to specificrange: 8 % 12 is 8,18 % 12 is 6_ o eys fo indices
within array

For more review /practice, check out https://www.khanacademy.org /computing /computer-science /cryptography /modarithmetic/a /what-is-modular-arithmetic

CSE 142 SP 18 - BRETT WORTZMAN

29

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

First Hash Function: % table size

elements

I
\\fOOII \\biZII \\barll \\bopll
I
“foo”); 0 % 10 0
“bar”); 5 % 10 5
“biz”) 11 % 10 =1
“bop”); 18 $ 10 = 8

30

public void put(int key, 1int wvalue)

data[hashToValidIndex (key)] value;

public V get (int key)
return datal[hashToValidIndex (key)]’

public int hashToValidIndex(int k) {

return k this.data.length;

Implement First Hash Function

Datal]
size

put mod key by table size, put item at
result

get mod key by table size, get item at
result

containsKey mod key by table size,
return data[result] == null remove mod
key by table size, nullify element at
result

size return count of items in
dictionary

Operation Array w/ indices as keys

Note: % is just a math
operator like +, -, /, *, so

it’s constant runtime

best o(1)
put(key,value)
worst o(1)
best o(1)
get(key)
worst o(1)
best o(1)
containsKey(key)
worst o(1)

CSE 373 SU 19 - ROBBIE WEBER 31

Questions?

things we talked about:

- review of ArrayMap + LinkedMap
- DirectAccessMap

- % as a hash function andSimpleHashMap

First Hash Function: % table size

elements

put (0,
put (5,
put (11
put (18,

put (20,

\\: (II \\biZ//

\\barll

\\bop 144

“foo”) ; 0 % 10 = 0
“bar”): 5 % 10 =5
“oiz") 11 % 10 =1
“bop” ; 18 % 10 = 8
S:(7); 20 % 10 = 0

— Collision!

Hash Obsession: Collisions

Collision: multiple keys translate to the same location of the array

Future big idea: the fewer the collisions, the better the runtime!
(we’ll see this when we figure out that resolving these leads to
worse runtime)

Two questions:
1. When we have a collision, how do we resolve it?
2. How do we minimize the number of collisions?

CSE 373 SU 19 - ROBBIE WEBER 34

Roadmap for lecture content today

Maps/Dictionary review

DirectAccessMap
a map implemented with an array with only integer keys

SimpleHashMap

a more flexible version of DirectAccessMap that uses a hash function on the key of interest to figure out
where it is in the array

SeparateChainingHashMap
fixes some limitations of the above Maps while still being very fast (in-practice).

It's what you'll implement in project 2 / what Java’s official HashMap does -- it’s the back-bone data
structure that powers so many Java programs and that you will definitely use if you keep programming. Get
hyped!

Strategies to handle hash collision

There are multiple strategies. In this class, we’'ll cover the following
ones:

1. Separate chaining
2. Open addressing

Linear probing
Quadratic probing
Double hashing

CSE 373 AU 18 — SHRI MARE 36

Separate chaining

Each index in our array represents a “bucket”.
When an item x hashes to index h:

If the bucket at index h is empty: create a new list containing
X

If the bucket at index h is already a list: add x if it is not
already present

In other words:

If multiple things hash to the same index, then
we’ll just put all of those in that same index bucket.
Often P(ou’_ll see the data structure chosen is a
linked-list like structure.

22

13

v Yoy oy

44

!

CSE 373 ROBBIE WEBER + HANNAH TANG

37

Reminder: the implementations of put/get/containsKey are all very similar,

S e pa rate Ch a i n i n g and almost always will have the same complexity class runtime

O

// some pseudocode

public boolean containsKey (int key) {

22
13
44

int bucketIndex = key % data.length;

loop through data[bucketIndex]

vy v v

return true 1f we find the key 1in

data[bucketIndex]

return false 1f we get to here (didn’t

v

find 1t) runtime analysis
Are there different possible states for our

O N G O B LW RO —

} Hash Map that make this code run
slower/faster, assuming there are already n
key-value pairs being stored?

©

Yes! If we had to do a lot of loop iterations to find the key in the bucket, our code will run slower. | E T SRTINNIATRI

A best case situation tor separate chaining

It’s possible (and likely if you follow some best-practices) that everything is spread out across the buckets pretty
evenly. This is the opposite of the last slide: when we have minimal collisions, our runtime should be less. For
example, if we have a bucket with only 0 or 1 element in it, checking containsKey for something in that bucket will only

take a constant amount of time.

-~
~a

We’re going to try a lot of stuff we can to make it more likely we achieve this beautiful state & .

In-practice situations for separate chaining

Generally we can achieve something close to the best case situation from the previous slide and
maintain our Hash Map so that every bucket only has a small constant number of items. There
may be some outliers that have slightly more buckets, but generally if we follow all the best
practices, the runtime will still be ®(1) for most cases!

(The worst case is still ®(n) but again, we’ll try really hard to prevent that)

Operation Array w/ indices as keys

best o(1) Reminder: the in-practice
: runtimes are assuming an
putliey,value) n-practice a8 even distribution of the
worst Om) keys inside the array and
best o(1) following of best-practices
get(key) In-practice (1) to ensure the average
worst o(1) chain length is low.
best O(1)
remove(key) In-practice o(1)
worst O(n)

Best practices (pay attention to this for the hw)

= what about resizing?

for data structures like ArrayMap or ArrayList or ArrayStack we had to resize when we're full just because we
couldn’t store any more things! But our Separate Chaining Hash Map is a little bit different: we aren’t ever
forced to resize our main array, since the buckets are flexible size.

It turns out we still want to resize “every so often” to make
sure the average/expected length of each bucket is a small

Il
v

(5, b) // some pseudocode b
It’s possible that everything (by chance) hashes to the same 1 public boolean containsKey(int key) { n U m e r-
bucket! (in other words: this is how collisions will hurt our (25, h) int bucketlIndex = key % data.lenath;
runtime) loop through data[bucketIndex]
return true if we find the key in
If all n of our key-value pairs are in th bucket 2 o data[Bugketindss)
all n of our key-value pairs are in the same bucke i o ; ; . . .
cominiey coud ok O i e verstcese, s 0 Consider what happens if we had the array length 10 like
! .
Consider what happens if we ask “containsKey(555)" on this (451’ a) O n th e | Eft, b ut h a d 1 O O key_va | U e pa I rS?
dictionary? 15, o) | —
i 2] Note: we lost our (1) worst-case runtime
We'd have to go to index 5 and check all n elements in the ST from DirectAccessMap when we have to deal
bucket to see if they were the key *555°. § 1 it ! with collisions, but we’ll see in a bit how to . . . M
75, 9 prevent this situation as best we can. ASSlJmlng our In—praCtICE Nniceness (ﬂOt—WOFSt Case) yOU

would expect on average each of the 10 buckets has about
10 key-value pairs in it.

What happens if we stick with the same size array but add
100 more key-value pairs? Each bucket gets about 10
more —-key-value pairs and the runtime is getting worse
and worse.

Best practices (pay attention to this for the hw)

It turns out we still want to resize “every so often” to make sure the average/expected length of each bucket
is a small number.

Consider what happens if we had the array length 10 like on the left, but had 100 key-value pairs?

Assuming our in-practice niceness (not-worst case) you would expect on average each of the 10 buckets
has about 10 key-value pairs in it.

What happens if we stick with the same size array but add 100 more key-value pairs? Each bucket gets
about 10 more -key-value pairs and the runtime is getting worse and worse.

The pattern we're getting to is that the expected runtime is approximately: # of pairs / array.length (AKA n /
c where n is the number of elements and c is the number of possible chains). If array.length is fixed for your
whole program, then this is an order-n runtime, but if the array.length also increases (because you re-size)
and you redistribute out the values evenly across the buckets, you can keep your runtime low. In particular,
if you resize when when your n / c ratio increases to about 1, you're expected to have 1 element or fewer in
each bucket at all times. (do this on your homework).

Tip: make sure you re-hash (re-distribute) your keys by the new array length after re-sizing so they don’t get
clustered in the old array length range.

However, if you resize once you hit that 1:1 threshold,
the current A is expected to be less than 1 (which is a
constant / constant runtime, so we can simplify to O(1)).

Operation Array w/ indices as keys

To be more precise, the in-practice runtime depends
on A, the current average chain length.

best 0(1)

put(key,value) In-practice O(A)
worst O(n)

best 0(1)

get(key) In-practice O(A)
worst O(n)

best 0O(1)

remove(key) In-practice O(A)
worst O(n)

Lambda + resizing rephrased P

27|
—> (73]
(22|

“In-Practice” Case:
Depends on average number of
elements per chain

Load Factor A
If nis the total number of key-
value pairs

Let c be the capacity of array
Load Factor A = %

CSE 373 SU 19 - ROBBIE WEBER

43

What about non integer keys?

Hash function definition

A hash function is any function that can be used to map data of arbitrary size to fixed-size values.

Let’s use define another hash function to change stuff like Strings into ints!

Best practices for designing hash functions:

Avoid collisions
The more collisions, the further we move away from O(1+A)

Produce a wide range of indices, and distribute evenly over them

Low computational costs
Hash function is called every time we want to interact with the data

CSE 373 SU 19 - ROBBIE WEBER 44

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

(Before we % by length, we have to convert the

data into an int)

public int hashCode (String input)
return input.length{();
}

public int hashCode (String input)
int output = 0;
for (char ¢ : 1nput) {
out += (int)c;
}

return output;

public int hashCode (String input)
int output = 1;
for (char c¢ : input) {

int nextPrime = getNextPrime ()

out *= Math.pow (nextPrime,

}

{ | Pro:super fast
lots of collisions!

{

Pro: still really fast
some collisions

{

Pro: few collisions
slow, gigantic integers

(int)c);

return Math.pow (nextPrime, input.length());

CSE 373 SU 19 - ROBBIE WEBER

45

Java’s hashCode (relevant for project)

Luckily, most of these design decisions have been made for us by smart people. All objects
in java come with a “hashCode()” method that does some magic (see previous slide for the
not-magic version) to turn any object type (like String, ArrayList, Point, Scanner) into an
integer. These hashCodes are designed to distribute pretty evenly / not have lots of
collisions, so we use them as the starting point for determining the bucket index.

high level steps to figure out which bucket a key goes into
call the key.hashCode() to get an int representation of the object
% by the array table length to convert it to a valid index for your hash map

Best practices for an nice distribution of keys recap

resize when lambda (number of elements / number of buckets) increases up to 1

when you resize, you can choose a the table length that will help reduce collisions if you
multiply the array length by 2 and then choose the nearest prime number

design the hashCode of your keys to be somewhat complex and lead to a distribution of
different output numbers

Practice

Consider an IntegerDictionary using separate chaining with an internal capacity of 10.
Assume our buckets are implemented using a LinkedList where we append new
key-value pairs to the end.

Now, suppose we insert the following key-value pairs. What does the dictionary
internally look like?

(1, a) (5,b) (11,a) (7.d) (12,e) (17,f) (1,g) (25,h)

CSE 373 SU 19 - ROBBIE WEBER 48

Practice

Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume
our buckets are implemented using a LinkedList. Use the following hash function:

public int hashCode (String input) {

©)

return 1nput.length() % arr.length;
}

Now, insert the following key-value pairs. What does the dictionary internally look like?

(“a” 1) (“ab” 2) (“c” 3) ("abc” 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world” 8)

(llaII’ 1) (I{ab”’ 2) (llabcﬂ’ 4) (llabcdﬂ’ 5)
| |

v v
(“c”, 3) (“abcdabcd”, 6)

l |

(“hello world”, 8) (“five”, 7)

CSE 373 SU 19 - ROBBIE WEBER

49

Java and Hash Functions

Object class includes default functionality:
equals

hashCode

If you want to implement your own hashCode you should:
Override BOTH hashCode() and equals()

If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true

That requirement is part of the Object interface.
Other people’s code will assume you've followed this rule.

Java’'s HashMap (and HashSet) will assume you follow these rules and conventions for your
custom objects if you want to use your custom objects as keys.

CSE 373 SU 19 - ROBBIE WEBER 50

