
Lecture 8: Recurrences
and Intro to Hashing

CSE 373: Data Structures
and Algorithms

1

Please log onto https://edstem.org/us/courses/21257/discussion/ to submit live
lecture questions

Please log onto PollEv.com/champk to answer the daily lecture participation question

https://edstem.org/us/courses/21257/discussion/
http://pollev.com/champk

Warm Up!

2CSE 373 SP 22 – CHAMPION

What’s the theta bound for the runtime function for this piece of
code?

public void method1(int n) {
 if (n <= 100) {
 System.out.println(“:3”);
 } else {
 System.out.println(“:D”);
 for (int i = 0; i<16; i++) {
 method1(n / 4);
 }
 }
}

Please fill out the Poll at- pollev.com/champk

a = 16, b = 4, c = 0

If

If

If

then

then

then

Master Theorem

2 > 0

Announcements
 Exercise 1 – Algorithm Analysis – Due Friday April 15th

 Project 1 – Deques – Due Wednesday April 13th

 Project 2 is out! Due Wednesday April 27th

 - 2 week assignment, PLEASE PLEASE PLEASE START NOW

 Midterm goes out Friday April 29th

 Office Hours FYI
 - TAs have been instructed to only spend 15 min with each student
 - Attending in person makes things go faster
 - For online office hours please use the Ed board post to queue

3CSE 373 22 SP – CHAMPION

For real, though, it will take you 2 weeks, do not wait until next week to start

Questions

4CSE 373 20 SP – CHAMPION & CHUN

5

Modeling Recursive Code

CSE 373 20 SP – CHAMPION & CHUN

Recurrence to Big-Θ

It’s still really hard to tell what the big-O is just by looking at it.

But fancy mathematicians have a formula for us to use!

If

If

If

then

then

then

Master Theorem

CSE 373 SP 20 – CHUN & CHAMPION

Understanding Master Theorem

 The log of a < c case
-Recursive case does a lot of non recursive work in
comparison to how quickly it divides the input size

-Most work happens in beginning of call stack
-Non recursive work in recursive case dominates
growth, nc term

 The log of a = c
-Recursive case evenly splits work between non
recursive work and passing along inputs to
subsequent recursive calls

-Work is distributed across call stack

 The log of a > c case
-Recursive case breaks inputs apart quickly and
doesn’t do much non recursive work

-Most work happens near bottom of call stack

7

▪ A measures how many recursive calls are
triggered by each method instance

▪ B measures the rate of change for input
▪ C measures the dominating term of the non

recursive work within the recursive method
▪ D measures the work done in the base case

CSE 373 SP 20 – CHUN & CHAMPION

If

If

If

then

then

then

Master Theorem

Recursive Patterns
 Pattern #1: Halving the Input

 Pattern #2: Constant size input and doing work

 Pattern #3: Doubling the Input

8CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort

Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 9

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

Conquer
0

8

0

8

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

Merge Sort

CSE 373 SP 18 - KASEY CHAMPION 10

mergeSort(input) {
 if (input.length == 1)
 return
 else
 smallerHalf = mergeSort(new [0, ...,
mid])
 largerHalf = mergeSort(new [mid + 1,
...])
 return merge(smallerHalf, largerHalf)
}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

1 if n<= 1
2T(n/2) + n otherwise

T(n) =

Pattern #2 – Constant size input and doing work

Take a guess! What is the Big-O
of worst case merge sort?

Merge Sort Recurrence to Big-Θ

If

If

If

then

then

then

Master Theorem

CSE 373 SP 20 – CHUN & CHAMPION

1 if n<= 1
2T(n/2) + n otherwise

T(n) =

Recursive Patterns
 Pattern #1: Halving the Input

 Pattern #2: Constant size input and doing work

 Pattern #3: Doubling the Input

12CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort Θ(nlogn)

Calculating Fibonacci

Calculating Fibonacci
 public int fib(int n) {

 if (n <= 1) {

 return 1;

 }

 return fib(n-1) + fib(n-2);

 }

13CSE 373 20 WI – HANNAH TANG

Almost

f(4)

f(3) f(2)

f(2) f(2) f(1) f(1)

f(1) f(1)f(1) f(1)

• Each call creates 2 more calls
• Each new call has a copy of the

input, almost
• Almost doubling the input at

each call

Pattern #3 – Doubling the Input

Calculating Fibonacci Recurrence to Big-Θ
 public int f(int n) {

 if (n <= 1) {

 return 1;

 }

 return f(n-1) + f(n-2);

 }

14CSE 373 20 WI – HANNAH TANG

d

2T(n-C
1
) + C

2

Master Theorem

Can we use master theorem?

Uh oh, our model doesn’t match that format…

Maybe geometry can help!

Can we intuit a pattern?
T(1) = d
T(2) = 2T(2-1) + c = 2(d) + c
T(3) = 2T(3-1) + c = 2(2(d) + c) + c = 4d + 3c
T(4) = 2T(4-1) + c = 2(4d + 3c) + c = 8d + 7c
T(5) = 2T(5-1) + c = 2(8d + 7c) + c = 16d +25c
Looks like something’s happening but it’s tough

Finish the recurrence, what is the
model for the recursive case?

2T(n-C
1
) + C

2

Calculating Fibonacci Recurrence to Big-Θ

15CSE 373 20 WI – HANNAH TANG

How many layers in the function call tree?

How many layers will it take to transform
“n” to the base case of “1” by subtracting 1

For our example, 4 -> Height = n

How many function calls per layer?

Layer Function
calls

1 1

2 2

3 4

4 8

How many function calls on layer k?

2k-1

How many function calls TOTAL
for a tree of k layers?

1 + 2 + 3 + 4 + … +
2k-1

f(4)

f(3) f(2)

f(2) f(2) f(1) f(1)

f(1) f(1)f(1) f(1)

Calculating Fibonacci Recurrence to Big-Θ
 Patterns found:

16CSE 373 20 SP – CHAMPION & CHUN

How many function calls on layer k? 2k-1

How many function calls TOTAL for a tree of k layers?

1 + 2 + 4 + 8 + … + 2k-1

Total runtime = (total function calls) x (runtime of each function call)

Total runtime = (1 + 2 + 4 + 8 + … + 2k-1) x (constant work)

1 + 2 + 4 + 8 + … + 2k-1 =

How many layers in the function call tree? n

Summation Identity
Finite Geometric Series

Recursive Patterns

 Pattern #1: Halving the Input

 Pattern #2: Constant size input and doing work

 Pattern #3: Doubling the Input

17CSE 373 20 WI – HANNAH TANG

Binary Search Θ(logn)

Merge Sort Θ(nlogn)

Calculating Fibonacci Θ(2n)

Questions

18CSE 373 20 SP – CHAMPION & CHUN

19

Intro to Hashing

CSE 373 20 SP – CHAMPION & CHUN

Dictionaries (aka Maps)
 Every Programmer’s Best Friend

 You’ll probably use one in almost every programming project.
-Because it’s hard to make a big project without needing one sooner or later.

CSE 373 19 SU - ROBBIE WEBER

// two types of Map implementations supposedly covered in CSE 143
Map<String, Integer> map1 = new HashMap<>();
Map<String, String> map2 = new TreeMap<>();

Review: Maps
 map: Holds a set of distinct keys and a collection
of values, where each key is associated with one
value.
-a.k.a. "dictionary"

CSE 373 19 SU - ROBBIE WEBER

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item and
associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

supported operations:
-put(key, value): Adds a given item into

collection with associated key,
-if the map previously had a mapping

for the given key, old value is replaced.

-get(key): Retrieves the value mapped to
the key

-containsKey(key): returns true if key is
already associated with value in map,
false otherwise

-remove(key): Removes the given key and
its mapped value

Implementing a Map with an Array
ArrayMap<K, V>

put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, replace pair to
be removed with last pair in collection
size return count of items in dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis – (if key is the last one looked at /
not in the dictionary)
put()

get()

containsKey()

remove()

size()
O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

0 1 2 3

containsKey(‘c’)
get(‘d’)
put(‘b’, 97)
put(‘e’, 20)

(‘a’, 1) (‘b’, 2)

Map ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item and
associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)

CSE 373 22 SP - CHAMPION

Big O Analysis – (if the key is the first one looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant
4

(‘e’, 20)

Implementing a Map with Nodes
LinkedMap<K, V>

put if key is unused, create new with
pair, add to front of list, else
replace with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in
dictionary

state

behavior

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

Map ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item and
associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20

CSE 373 19 SU - ROBBIE WEBER

Big O Analysis – (if key is the last one looked
at / not in the dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

Big O Analysis – (if the key is the first one looked
at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant

Can we do better?
Let’s simplify the problem we’re working with + combine it with some facts about arrays.

Problem Simplification: only worry about supporting integer keys

Array Facts: accessing (data[i]) or updating an element (data[i] = …) at a given
index takes Theta(1) runtime.

If we store the Key-Value pairs at the data[key] then we don’t have to do any looping
to find it. For example consider `containsKey` or `get` -- we can just jump directly to
data[key] to figure out the return answer.

CSE 373 SP 22 - CHAMPION 24

DirectAccessMap<Integer, V>

put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return
true otherwise
remove nullify element at index
size return count of items in
dictionary

state

behavior

Data[]
size

indices 0 1 2 3 4 5 6 7 8 9

data

(3, Sherdil)

put(3, “Sherdil”);
get(3);

Can we do better? -- Direct Access Map impl.
 public void put(int key, V value) {
 this.array[key] = value;
 }

 public boolean containsKey(int key) {
 return this.array[key] != null;
 }

 public V get(int key) {
 return this.array[key];
 }

 public void remove(int key) {
 this.array[key] = null;
 }

25

DirectAccessMap<Integer, V>

put put item at given index
get get item at given index
containsKey if data[] null at
index, return false, return true
otherwise
remove nullify element at index
size return count of items in
dictionary

state

behavior

Data[]
size

Operation Array w/ indices as keys

put(key,value)
best 𝚹(1)

worst 𝚹(1)

get(key)
best 𝚹(1)

worst 𝚹(1)

containsKey(key)
best 𝚹(1)

worst 𝚹(1)
CSE 373 SP 22 - CHAMPION

Direct Access Map tradeoffs:

- what’s a benefit of using DirectAccessMap?
- what’s a bad thing when using DirectAccessMap?

CSE 373 20 SP – CHAMPION & CHUN

Can we do this for any integer?
 Idea 1:
 Create a GIANT array with every possible
integer as an index
 Problems:
-Can we allocate an array big enough?
-Super wasteful

 Idea 2:
 Create a smaller array, but create a way to
translate given integer keys into available
indices. Way less wasteful space-wise.
 Problem:
-How can we pick a good translation?

CSE 373 SU 19 - ROBBIE WEBER 27

Hash functions: translating a piece of data to an int

 In our case: we want to translate int keys to a valid index in our array. If our array is length
10 but our input key is 500, we need to make sure we have a way of mapping that to a
number between 0 and 9 (the valid indices for a length 10 array). This mapping that we
decide on is a hash function.

 One simple thing we can do (and that you will do when you implement this in your project):

 Hash function: take your key and % it by the length of the array.

 ex: key is 500, and array is length 10 – if you take 500 % 10, you will get the number 0, so
we’d just plop 500 and it’s value at index 0.

Hash function definition

A hash function is any function that can be used to map data of arbitrary size to fixed-size values.

CSE 373 20 SP – CHAMPION & CHUN

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

“review”: Integer remainder with % “mod”

 The % operator computes the remainder from integer division.
14 % 4 is 2

 3 43
 4) 14 5) 218
 12 20
 2 18
 15
 3

 Applications of % operator:
-Obtain last digit of a number: 230857 % 10 is 7

-See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

-Limit integers to specific range: 8 % 12 is 8, 18 % 12 is 6

CSE 142 SP 18 – BRETT WORTZMAN 29

218 % 5 is 3

For more review/practice, check out https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

Limit keys to indices
within array

Equivalently, to find a % b (for a,b > 0):
while(a > b-1)

a -= b;
return a;

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

First Hash Function: % table size

indices 0 1 2 3 4 5 6 7 8 9

elements

CSE 373 SP 22 - CHAMPION 30

put(0, “foo”);
put(5, “bar”);
put(11, “biz”)
put(18, “bop”);

“foo”

0 % 10 = 0
5 % 10 = 5
11 % 10 = 1
18 % 10 = 8

“bop”“bar”“biz”

Implement First Hash Function
 public void put(int key, int value) {
 data[hashToValidIndex(key)] = value;
 }

 public V get(int key) {
 return data[hashToValidIndex(key)];
 }

 public int hashToValidIndex(int k) {
 return k % this.data.length;
 }

CSE 373 SU 19 - ROBBIE WEBER 31

SimpleHashMap<Integer>

put mod key by table size, put item at
result
get mod key by table size, get item at
result
containsKey mod key by table size,
return data[result] == null remove mod
key by table size, nullify element at
result
size return count of items in
dictionary

state

behavior

Data[]
size

Operation Array w/ indices as keys

put(key,value)
best 𝚹(1)

worst 𝚹(1)

get(key)
best 𝚹(1)

worst 𝚹(1)

containsKey(key)
best 𝚹(1)

worst 𝚹(1)

Note: % is just a math
operator like +, -, /, *, so
it’s constant runtime

Questions?
things we talked about:
- review of ArrayMap + LinkedMap
- DirectAccessMap
- % as a hash function andSimpleHashMap

First Hash Function: % table size

indices 0 1 2 3 4 5 6 7 8 9

elements

CSE 373 SP 22 - CHAMPION 33

put(0, “foo”);
put(5, “bar”);
put(11, “biz”)
put(18, “bop”);

Collision!

“foo”

0 % 10 = 0
5 % 10 = 5
11 % 10 = 1
18 % 10 = 8

20 % 10 = 0

“bop”“bar”“biz”“:(”

put(20, “:(”);

Hash Obsession: Collisions
 Collision: multiple keys translate to the same location of the array

 Future big idea: the fewer the collisions, the better the runtime!
(we’ll see this when we figure out that resolving these leads to
worse runtime)

 Two questions:
 1. When we have a collision, how do we resolve it?
 2. How do we minimize the number of collisions?

CSE 373 SU 19 - ROBBIE WEBER 34

Roadmap for lecture content today
▪ Maps/Dictionary review

▪ DirectAccessMap
▪a map implemented with an array with only integer keys

▪ SimpleHashMap
▪a more flexible version of DirectAccessMap that uses a hash function on the key of interest to figure out
where it is in the array

▪ SeparateChainingHashMap
▪ fixes some limitations of the above Maps while still being very fast (in-practice).
▪ It’s what you’ll implement in project 2 / what Java’s official HashMap does -- it’s the back-bone data
structure that powers so many Java programs and that you will definitely use if you keep programming. Get
hyped!

CSE 373 20 SP – CHAMPION & CHUN

 There are multiple strategies. In this class, we’ll cover the following
ones:

 1. Separate chaining
 2. Open addressing
-Linear probing
-Quadratic probing
-Double hashing

Strategies to handle hash collision

CSE 373 AU 18 – SHRI MARE 36

Separate chaining
 Solution 1: Separate Chaining
 Each index in our array represents a “bucket”.
When an item x hashes to index h:
- If the bucket at index h is empty: create a new list containing
x

- If the bucket at index h is already a list: add x if it is not
already present

 in other words:
 If multiple things hash to the same index, then
we’ll just put all of those in that same index bucket.
Often, you’ll see the data structure chosen is a
linked-list like structure.

CSE 373 ROBBIE WEBER + HANNAH TANG 37

Separate chaining
 // some pseudocode

 public boolean containsKey(int key) {

 int bucketIndex = key % data.length;

 loop through data[bucketIndex]

return true if we find the key in

data[bucketIndex]

 return false if we get to here (didn’t

find it)

 }

CSE 373 ROBBIE WEBER + HANNAH TANG 38

Reminder: the implementations of put/get/containsKey are all very similar,
and almost always will have the same complexity class runtime

runtime analysis
Are there different possible states for our
Hash Map that make this code run
slower/faster, assuming there are already n
key-value pairs being stored?

Yes! If we had to do a lot of loop iterations to find the key in the bucket, our code will run slower.

A best case situation for separate chaining
0 1 2 3 4 5 6 7 8 9

(0, b) (2, b) (3, b) (4, b) (5, b) (6, b) (7, b) (8, b)

It’s possible (and likely if you follow some best-practices) that everything is spread out across the buckets pretty
evenly. This is the opposite of the last slide: when we have minimal collisions, our runtime should be less. For
example, if we have a bucket with only 0 or 1 element in it, checking containsKey for something in that bucket will only
take a constant amount of time.

We’re going to try a lot of stuff we can to make it more likely we achieve this beautiful state ☺.

CSE 373 20 SP – CHAMPION & CHUN

In-practice situations for separate chaining

Operation Array w/ indices as keys

put(key,value)

best 𝚹(1)
In-practice 𝚹(1)

worst 𝚹(n)

get(key)

best 𝚹(1)
In-practice 𝚹(1)

worst 𝚹(1)

remove(key)

best 𝚹(1)
In-practice 𝚹(1)

worst O(n)

Reminder: the in-practice
runtimes are assuming an
even distribution of the
keys inside the array and
following of best-practices
to ensure the average
chain length is low.

CSE 373 20 SP – CHAMPION & CHUN

Best practices (pay attention to this for the hw)

▪ what about resizing?
▪ for data structures like ArrayMap or ArrayList or ArrayStack we had to resize when we’re full just because we
couldn’t store any more things! But our Separate Chaining Hash Map is a little bit different: we aren’t ever
forced to resize our main array, since the buckets are flexible size.

It turns out we still want to resize “every so often” to make
sure the average/expected length of each bucket is a small
number.

Consider what happens if we had the array length 10 like
on the left, but had 100 key-value pairs?

Assuming our in-practice niceness (not-worst case) you
would expect on average each of the 10 buckets has about
10 key-value pairs in it.

What happens if we stick with the same size array but add
100 more key-value pairs? Each bucket gets about 10
more –key-value pairs and the runtime is getting worse
and worse. CSE 373 20 SP – CHAMPION & CHUN

Best practices (pay attention to this for the hw)
It turns out we still want to resize “every so often” to make sure the average/expected length of each bucket
is a small number.

Consider what happens if we had the array length 10 like on the left, but had 100 key-value pairs?

Assuming our in-practice niceness (not-worst case) you would expect on average each of the 10 buckets
has about 10 key-value pairs in it.

What happens if we stick with the same size array but add 100 more key-value pairs? Each bucket gets
about 10 more –key-value pairs and the runtime is getting worse and worse.

The pattern we’re getting to is that the expected runtime is approximately: # of pairs / array.length (AKA n /
c where n is the number of elements and c is the number of possible chains). If array.length is fixed for your
whole program, then this is an order-n runtime, but if the array.length also increases (because you re-size)
and you redistribute out the values evenly across the buckets, you can keep your runtime low. In particular,
if you resize when when your n / c ratio increases to about 1, you’re expected to have 1 element or fewer in
each bucket at all times. (do this on your homework).

Tip: make sure you re-hash (re-distribute) your keys by the new array length after re-sizing so they don’t get
clustered in the old array length range. CSE 373 20 SP – CHAMPION & CHUN

Lambda + resizing rephrased
 To be more precise, the in-practice runtime depends
on λ, the current average chain length.

However, if you resize once you hit that 1:1 threshold,
the current λ is expected to be less than 1 (which is a
constant / constant runtime, so we can simplify to O(1)).

CSE 373 SU 19 - ROBBIE WEBER 43

Operation Array w/ indices as keys

put(key,value)

best O(1)

In-practice O(λ)

worst O(n)

get(key)

best O(1)

In-practice O(λ)

worst O(n)

remove(key)

best O(1)

In-practice O(λ)

worst O(n)

What about non integer keys?

CSE 373 SU 19 - ROBBIE WEBER 44

Hash function definition

A hash function is any function that can be used to map data of arbitrary size to fixed-size values.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

(Before we % by length, we have to convert the
data into an int)
 Implementation 1: Simple aspect of values
 public int hashCode(String input) {
 return input.length();
 }

 Implementation 2: More aspects of value
 public int hashCode(String input) {
 int output = 0;
 for(char c : input) {
 out += (int)c;
 }
 return output;
 }

 Implementation 3: Multiple aspects of value + math!
 public int hashCode(String input) {
 int output = 1;
 for (char c : input) {
 int nextPrime = getNextPrime();
 out *= Math.pow(nextPrime, (int)c);
 }
 return Math.pow(nextPrime, input.length());
 }

CSE 373 SU 19 - ROBBIE WEBER 45

Pro: super fast
Con: lots of collisions!

Pro: still really fast
Con: some collisions

Pro: few collisions
Con: slow, gigantic integers

Java’s hashCode (relevant for project)

▪ Luckily, most of these design decisions have been made for us by smart people. All objects
in java come with a `hashCode()` method that does some magic (see previous slide for the
not-magic version) to turn any object type (like String, ArrayList, Point, Scanner) into an
integer. These hashCodes are designed to distribute pretty evenly / not have lots of
collisions, so we use them as the starting point for determining the bucket index.

▪high level steps to figure out which bucket a key goes into
▪call the key.hashCode() to get an int representation of the object

▪% by the array table length to convert it to a valid index for your hash map

CSE 373 20 SP – CHAMPION & CHUN

Best practices for an nice distribution of keys recap

▪ resize when lambda (number of elements / number of buckets) increases up to 1

▪ when you resize, you can choose a the table length that will help reduce collisions if you
multiply the array length by 2 and then choose the nearest prime number

▪ design the hashCode of your keys to be somewhat complex and lead to a distribution of
different output numbers

CSE 373 20 SP – CHAMPION & CHUN

Practice

 Consider an IntegerDictionary using separate chaining with an internal capacity of 10.
Assume our buckets are implemented using a LinkedList where we append new
key-value pairs to the end.

 Now, suppose we insert the following key-value pairs. What does the dictionary
internally look like?

 (1, a) (5,b) (11,a) (7,d) (12,e) (17,f) (1,g) (25,h)

CSE 373 SU 19 - ROBBIE WEBER 48

0 1 2 3 4 5 6 7 8 9

(1, a) (5, b)

(11, a) (17, f)

(1, g) (12, e) (7, d)

(25, h)

Practice

 Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume
our buckets are implemented using a LinkedList. Use the following hash function:

 public int hashCode(String input) {
 return input.length() % arr.length;
 }

 Now, insert the following key-value pairs. What does the dictionary internally look like?

 (“a”, 1) (“ab”, 2) (“c”, 3) (“abc”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)

CSE 373 SU 19 - ROBBIE WEBER 49

0 1 2 3 4 5 6 7 8 9

(“a”, 1) (“abcd”, 5)

(“c”, 3)

(“five”, 7)

(“abc”, 4)(“ab”, 2)

(“hello world”, 8)

(“abcdabcd”, 6)

Java and Hash Functions

 Object class includes default functionality:
-equals

-hashCode

 If you want to implement your own hashCode you should:
-Override BOTH hashCode() and equals()

If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true

 That requirement is part of the Object interface.
Other people’s code will assume you’ve followed this rule.

 Java’s HashMap (and HashSet) will assume you follow these rules and conventions for your
custom objects if you want to use your custom objects as keys.

CSE 373 SU 19 - ROBBIE WEBER 50

