
© 2024 All Rights Reserved

1

Isolation Levels and MVCC
in SQL Databases:
A Technical Comparative Study

Franck Pachot, Developer Advocate

@FranckPachot

© 2024 All Rights Reserved

Question: Is this car moving forward or backwards?

2

Answer:

it is not moving

that's a picture (not a movie)

But the snapshot was taken

while the car was moving

Forward/Backward depends

on how the snapshot is taken

📸📷📷📷

📷📷📷📸

© 2024 All Rights Reserved

Question: How do we solve this anomaly?

3

Answer:

⏹ Stop the car

⏸ Take a movie

© 2024 All Rights Reserved

Databases are moving (others are writing to it)

4

⏹ Stop the car

⏸ Take a movie

To read on a consistent state

⏹⏺ Lock what intend to read

⏪⏸ Read a previous snapshot

© 2024 All Rights Reserved

Forget what you have learned (Isolation Levels & Phenomenon)

5

This was defined in SQL-92 but is not how databases work!

Modern databases use MVCC snapshots and explicit locks

❌Serializable SI
Read-Only SI

Snapshot Isolation (SI)
Read Committed SI

© 2024 All Rights Reserved

SQL ANSI vs. Real Life

6

SQL Standard:

- 🍿Users and application developers do not lock the rows explicitly

- 📽The DB locks rows implicitly that are read to prevent anomalies

SQL Databases:

- ⏪⏸Read from a past snapshot to avoid blocking reads

- ⏹⏺Developers declare their lock intent (SELECT FOR UPDATE)

when the state they read must be frozen until the end of transaction

© 2024 All Rights Reserved

7

Some Concepts to understand Isolation Levels in modern DBs:
- SQL transactions and ACID
- Read and Write time during a transaction
- Optimistic and Pessimistic locking
- Explicit locking in SQL

© 2024 All Rights Reserved

SQL transactions are complex

8

SQL Transactions are complex

- do multiple reads and writes,

and writes depends on what was read

example: book a seat that is free
- do not declare what they do before doing it

Even a single row insert in a SQL table is a complex transaction:

- check foreign keys

- update secondary indexes

- raise error if key already exists

© 2024 All Rights Reserved

SQL transactions are more complex than NoSQL transactions

9

If you read that your favorite NoSQL database is ACID, remember

NoSQL can be transactional but transactions:

- are a single call (put/get)

- with no foreign keys or global unique index

- with all intents known in advance

- with eventual consistency for secondary indexes

- and no joins, limited multi-object read/writes,...

© 2024 All Rights Reserved

- Read and writes cannot happen simultaneously (can't be atomic)

- We can read from the past, not from the future

except if there's no modifications, then past=future
- We cannot write to the past

except if there's no modifications, then present=future

Read and Write time cannot be instantaneous

10

co
m

m
it

be
gi

n

re
ad

w
rit

e

w
rit

e

re
ad

w
rit

e

time
 133715 133718

w
rit

e

 133718 133718 133718 133718 visible time

© 2024 All Rights Reserved

Read and Write time in MVCC databases

11

- Write time is the commit time: exclusive lock

- Read time is from a past snapshot

- Writes or Commit check if the two states conflict

because of concurrent transactions committed in between

co
m

m
it

be
gi

n

re
ad

 📸

w
rit

e

🔒

w
rit

e

🔒

re
ad

 📸

w
rit

e

🔒

time
 133715 133718

w
rit

e

🔒

 133718 133718 133718 133718 visible time

conflict detection (current state has changed since read snapshot)

© 2024 All Rights Reserved

Let's name them from their behavior:

- Wait-on-Conflict (enqueue)
When a cause of conflict is detected, we wait for the conflicting transaction to end (commit or rollback)

and continue

- Fail-on-Conflict (kill or die)
When a conflicting situation is detected, raise an error and retry

In some cases, the database can retry automatically, in some others the application must have a retry logic

Note: Optimistic Concurrency Control (OCC) is Fail-at-Conflict delayed to Commit time

- Skip-on-Conflict (ignore)

Optimistic and Pessimistic locking

12

© 2024 All Rights Reserved

Explicit locking (by the application, in SQL)

13

This is ignored by the SQL Standard

But that's what most applications do to avoid anomalies:

SELECT ... FOR UPDATE
 WAIT -- Wait-on-Conflict
 NOWAIT -- Fail-on-Conflict
 SKIP LOCKED -- Skip-on-Conflict

LOCK TABLE ... SHARE/EXCLUSIVE... -- for serializable

Use this and ignore Isolation Levels 😁

$ oerr ora 4143141431, 0000, "Application Continuity does

not support ISOLATION_LEVEL=SERIALIZABLE; failover cannot continue."

// *Cause: Application Continuity did not support

ISOLATION_LEVEL=SERIALIZABLE.

// *Action: Consider using SELECT FOR UPDATE

instead of serializable transactions.

© 2024 All Rights Reserved

14

Default Isolation Level and Explicit Locking is OK

but only if you understand it, and all databases behave differently

That's the reason for this presentation:
Isolation Levels and MVCC in SQL Databases: A Technical Comparative Study

 👆
 MVCC = Multi-Version Concurrency Control
 aka Multi-Version Read Consistency
 aka Multi Generational Architecture

© 2024 All Rights Reserved

20 years later:

🟢 all DBs have different
behavior on race condition
(MVCC implementations)

🔴 all databases provide
MVCC isolation levels

🟡 apps prefer explicit
locking to isolation levels
(SELECT FOR UPDATE)

🟡 TPC-C was built so that it
doesn't require Serializable
because Oracle didn't have it

What IBM said in 2002 about Multi-Version Read Consistency

15

https://www.youtube.com/watch?v=IP-S_RHlsEQ&t=520s&ab_channel=MicrosoftResearch
https://www.youtube.com/watch?v=IP-S_RHlsEQ&t=520s&ab_channel=MicrosoftResearch
https://www.youtube.com/watch?v=IP-S_RHlsEQ&t=520s&ab_channel=MicrosoftResearch

© 2024 All Rights Reserved

Non-MVCC databases

16

The cannot read as-of one state

They need to lock what they read to guarantee the same state

The Isolation Level is the duration of this lock

DB2, SQL Server (<2005), ...

co
m

m
it

be
gi

n

re
ad

 🔐

w
rit

e

🔒

w
rit

e

🔒

re
ad

 🔐

w
rit

e

🔒

time
 133715 133718

w
rit

e

🔒

 133718 133718 133718 133718 visible time

❌

© 2024 All Rights Reserved

MVCC read doesn't lock

17

- need to read from the past

- need to detect conflicts with the writes

- but 🎊 readers don't block writers (reports, dumps, read replicas)

Writes are the same (lock current state). MVCC is about reads

co
m

m
it

be
gi

n

re
ad

 📸

w
rit

e

🔒

w
rit

e

🔒

re
ad

 📸

w
rit

e

🔒

time
 133715 133718

w
rit

e

🔒

 133718 133718 133718 133718 visible time

conflict detection (current state has changed since read snapshot)

© 2024 All Rights Reserved

MVCC: Multi-Version Concurrency Control

18

Protocol defined in MIT 1978. First implementations at DEC as a solution to deadlocks.

Then VAX Rdb/ELN and InterBase with tuple versioning.

Changes are versioned (table rows, index entries, file blocks (pages)

Transactions can read AS-OF the start of transaction (start of statement)

Optimistic locking for reads (no locks), Pessimistic locking for writes

Great for mixed workloads (analytic/reporting on operational database)

Doesn't affect writes (they still have to lock) except for conflict detection

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-205.pdf

© 2024 All Rights Reserved

MVCC: implementation choices

19

How to version: timesamp (monotonic clock), sequence# (wraparound)

What to version: pages? rows? index entries?

Where to store past versions: in-place? undo log?

Which direction to scan: oldest to newest, newest to oldest

When to garbage collect: re-use, vacuum, compaction

Secondary indexes: must index all values, pointer to PK or TID

© 2024 All Rights Reserved

MVCC what is
versioned

where is the past
version

where is the current version the storage is organized by delayed commit and
garbage collection

PostgreSQL table rows
(heap)

same place, with a
pointer to new one

appended to heap table (or maybe
in same block if fillfactor <100 to
avoid updating all indexes)

by key in index with all versions
together (until vacuum)
versions are scattered in heap

hint bits
vacuum

Oracle table or
index blocks

undo vectors
applied to current
block, pointers to old
ones

in-place with pointer to undo
records (table/index row/entry lock
flag, block ITL, transaction table, tx
undo records)

b-tree indexes and heap table for
current block. Past versions: per
transaction, undo vectors
both protected by redo logs (WAL)

delayed cleanout
rollback expiration
(but ORA-1555)

SQL Server table
rows

tempdb, now in
Persistent Version
Store (for ADR)

in-place with a pointer to old tables by key in clustered and secondary
index
Past versions: new to old

ghost cleanup

MySQL
InnoDB

table rows
(PK)

two logs types:
inserts and one for
update/delete

in-place with pointer to transaction
table and then to update log

by key indexes + delete marker,
primary index points to transaction +
delete marker, rollback segment

purge the delete
markers

YugabyteDB table or index
rows/entries
in LSM-Tree

next to the current:
rocksdb key is
pk/index + timestmp

new subdoc in-place (new packed
row or new column value) in
IntentsDB, moved to RegularDB
after commit

by key for secondary indexes and table
(primary key) and versions. In
intents/regular Memtable + SST Files

deletion of provisional
records in IntentsDB
once in RegularDB
SST compaction

All databases are different: MVCC implementation

20

© 2024 All Rights Reserved

Some Pros and Cons

21

Keep old versions in place
 ➖ bloat, need to vacuum, versions scattered in heap
 ➕ fast rollback (= fast recovery, = fast failover)

MVCC in heap table only
➖ heap fetches for Index Only Scan, need to rebuild indexes to free space
 ➕ simplicity (easy to add new index types)

Stop garbage collection when long transactions
 ➖ long transactions block vacuum
 ➕ readers do not fail with "snapshot too old" (on primary)

Store per key, per transaction... Chain versions from old to new or ...

© 2024 All Rights Reserved

Default isolation levels

22

Read Committed (PostgreSQL, YugabyteDB, Oracle, SQL Server)
- ✅ with statement read restart: Oracle, YugabyteDB

- ⚠ different read times in stored procedure: Oracle

- ⚠ with row re-read: PostgreSQL

Repeatable Read (MySQL)
- In MVCC databases, RR is Snapshot Isolation

- ⚠ MySQL can show DELETE or UPDATE that are not isolated

Serializable (CockroachDB, Spanner)
- Need to implement Read Committed to be compatible with existing applications

https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html#:~:text=concurrent,rows

© 2024 All Rights Reserved

Read Restart

23

Read Committed is not exempt from serializable errors
 but the database can have its own retry logic

Read Restart is possible in Read Committed
 because the spec allows per-statement read-time

Require savepoints before each statements
 possible in Repeatable Read if first statement (can restart it)

Only if nothing has been returned to the application
 cannot rollback if the application did something non-transactional (file, e-mail, queue)

© 2024 All Rights Reserved

PostgreSQL Read Committed
- may read some rows at a different point in time (example)

MySQL Repeatable Read
- may see other's commits (doc)

Oracle Serializable is not serializable
- In the old times: non-default "_serializable"=true wich locked the tables

SQL Server escalates locks (UPDLOCK)
- prefer non-MVCC isolation levels

Long transaction blocking garbage collection, or snapshot too old

Read Restart may transform dirty writes into lost updates

Don't Panic, the solution is often to SELECT FOR UPDATE

Be careful

24

https://dev.to/franckpachot/comment/2bp8n
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html#:~:text=concurrent,rows
https://docs.oracle.com/cd/A58617_01/server.804/a58241/ch3.htm#2477

© 2024 All Rights Reserved

When SQL standard defined isolation levels (SQL-92)
- user interactions, long transactions, not declaring all intents beforehand

Modern SQL usage
- lot of single-statement, auto-commit

- transactions do not span multiple user interactions

- applications know the intent of a transaction

- not all databases have serializable, and when they do it may hurt performance

SQL Isolation Levels vs. Implicit Locking

25

© 2024 All Rights Reserved

How to use Isolation Levels in MVCC databases - in short

26

Isolation Level What the DB does What your code can do

Read Committed No read locks

🕰 read-time = statement

Avoid non-repeatable reads with
SELECT FOR SHARE/UPDATE
but 👻 phantom reads and write skew possible

Repeatable
Read
=
Snapshot
Isolation

No read locks

🕰 read-time = transaction

Retry logic for error 40001

Avoid write skew with:
- Lock table 🥶
- SELECT FOR UPDATE on parent key
- Index on foreign keys in Oracle

Serializable Read locks (range or predicate)

🕰 read-time = transaction

Add a retry logic and code
like you are alone on the database 😎
Serializable read only doesn't need locks

© 2024 All Rights Reserved

Explicit locking

27

SELECT FOR SHARE
 ⚠ sufficient to prevent lost updates but may deadlock on later update

 https://x.com/FranckPachot/status/1721292232030880072?s=20
 🅾Oracle never implemented row shared locks

SELECT FOR NO KEY UPDATE
 guarantees the possibility to update the row columns later

SELECT FOR UPDATE on a parent row to avoid phantom reads on the childs

LOCK TABLE IN SHARE MODE for full serializability (but blocks DML)

✅ With the choice of WAIT, NOWAIT, SKIP LOCKED

SELECT FOR SHARE

https://x.com/FranckPachot/status/1721292232030880072?s=20

© 2024 All Rights Reserved

28

E-mail:
fpachot@yugabyte.com

Blogs:
dev.to/FranckPachot
blog.yugabyte.com/author/fpachot

Twitter:
@FranckPachot

Youtube:
youtube.pachot.net

LinkedIn:
www.linkedin.com/in/franckpachot

🚀Community Slack / Github:
www.yugabyte.com/community

Isolation Levels in Modern SQL Databases
blog series on dev.to:

https://dev.to/franckpachot/series/25468

https://dev.to/franckpachot/series/25468

© 2024 All Rights Reserved

Franck Pachot

Developer Advocate at Yugabyte

Past:
20+ years in databases, dev and ops, consulting

Oracle ACE Director, AWS Data Hero

Oracle Certified Master, AWS Database Specialty

29

fpachot@yugabyte.com

dev.to/FranckPachot

@FranckPachot

