
Number Theory in CS

Hmm interesting font



Similar to the sorting lecture, I’ll leave most of the more 
difficult mathematical proofs of theorems to the end of 
class. Feel free to leave before them if you’re not 

interested or stick around for some cool number theory



GCD and LCM
Greatest common divisor

Euclidean algorithm: gcd(a, b) = 
gcd(b%a, a) (% means mod)

Psuedocode: 

gcd(int a, int b) // assuming a < b

If (a == 0)

Return b

Else

Return gcd(b%a, a)

Complexity: O(log(min(a, b))

Least common multiple: 
just use the fact that 
gcd(a, b) * lcm(a, b) = 
a*b, so lcm(a, b) = 
a*b/(gcd(a, b))

If you know the prime 
factorizations of a and b, 
you can also find gcd and 
lcm by taking the min/max 
of each prime power in a 
and b



Example Euclidean Algortihm

gcd(268, 1004) 
= gcd(200, 268)
= gcd(68, 200)
=gcd(64, 68)
=gcd(4, 64)
=gcd(0, 4)
= 4



Quick detour into mods
a = b (mod m) means a and b have the same remainder when 

divided by m

For instance, 4 = 24 (mod 5)

If you take a mod equation and do a bunch of multiplication / addition to both sides, stuff is still true

4 * 3 = 24 * 3 (mod 5) (12 = 72 (mod 5))

4 *3 + 4 = 24 * 3 + 4 (mod 5) (16 and 76) 

You can also replace numbers with numbers equivalent to them in the mod and get true equations still

For instance, 4 * 7 = 3*6 + 10 (mod 5), and thus 4 * 2 = 3 * 1 + 0 (mod 5)



Primality Testing
Miller-Rabin: based on two fundamental ideas

● For all primes p, ap-1 = 1 (mod p); the converse DOES NOT HOLD
○ This is called Fermat’s Little Theorem

● If x2 = 1 (mod m) and x ≠ 1, -1 (mod m), then m is NOT prime

For testing a number n: let n-1 = 2t*u, where u is odd. Check from i = 0 to 
t-1, 

● If a2^(i+1) = 1 (mod n), and a2^i ≠ -1, 1 (mod n), then n is composite

And also if an-1 ≠ 1 (mod n), then n is composite

It turns out that if n is composite, 75% of the time, we will find that n is 
composite. But a can be pretty much any number, so if we choose 25 values for 
a, then the chances of us saying n is prime when it’s not is 1/250, which is 
so small that it will never happen 



Miller Rabin pseudocode and Complexity
u = n-1
t = 0; while (u%2 == 0) { u = u/2; t=t+1 }
Bool prime = true
Repeat 25 times

a = randint(); 
If (gcd(a, n) != 1)

Well that just means n isn’t prime so gg
Else

X = au%n
For i=0 to t-1

If x2 % n == 1 and x%n != -1, 1
Composite, prime = false

X = (x*x) % n
If x%n != 1

Composite, prime = false
Return prime

Complexity: k(log n)^3

K is 25 here

One log n from i = 0 to 
t-1

The others: apparently 
multiplying two numbers 
in mod n for large 
enough n is (log n)2 time

Not quite sure why but 
big numbers go brr





Binary exponentiation
Fast way to compute ab (mod c): we a, a2, a4, a8 … (mod c) and 
multiply together the ones in the binary representation of b

Answer = 1

While b > 0

If b%2 == 1

Answer = (answer * a)%c

b = b/2

a = (a*a)%c

Time complexity: O(log b) (we need that many operations to get all the 
squared powers, then we just multiply some of them together)



Binary exponentiation example
311 (mod 5): 11 in binary: 1011

1 * 3 = 3 (mod 5), after this: a at 32 = 4 (mod 5); 1011

3 * 4 = 2 (mod 5), after this: a at 42 = 1 = 34(mod 5); 1011

Result still at 2: a at 12 = 1 = 38 (mod 5); 1011

2 * 1 = 2 (mod 5); 1011

Final answer 2 

We did 31 * 32 * 38 (mod 5)



RSA
How do Cueball and Megan communicate privately while not 
being able to develop a strategy beforehand?



RSA: the details
Choose two large primes p, q

N = pq, e is some usually predetermined number (I think 
65537 is standard)

Private key: number d such that e*d = 1 (mod (p-1)(q-1))

Encoding the message: take C = Me (mod n) and send it over

Decoding the message: take Cd (mod n)



RSA: why it works
Given n, it’s incredibly difficult to find pq (you basically 
have to brute force)

Why does Mde = M (mod n)? 

● Euler’s Theorem: xphi(m) = 1 (mod m) if gcd(x, m) = 1
○ We don’t have to worry much about phi(m): just know that phi(pq) = (p-1)(q-1)

● Then xde = xy* (p-1)(q-1) + 1 = (x(p-1)(q-1))y * x = 1y * x = x (mod pq)

So we get the original message back!

The steps of taking exponent are done quickly using binary exponentiation



RSA: Computing modular inverse of e
Extended Euclidean algorithm

For any a, b, there exist integers x, y, such that ax + by = gcd(a, b) and the extended euclidean 
algorithm lets us find this (x, y)

Extended Euclid (a, b) // returns (x, y)

If a== 0

Return (0, 1)

b= ak + r (division)

(x,y) = Extended Euclid(r, a) 

Return (y-kx, x)



RSA: Computing modular inverse of e intuition
What we’re essentially doing is back-substituting: consider gcd(34, 20)

Euclidean Algorithm

34 = 20 * 1 + 14

20 = 14 * 1 + 6

14 = 6 * 2 + 2 ← the gcd

6 = 2 * 3 + 0

Extended Part

2 = 14 - 2*6

   = 14 - 2*(20 - 14*1) = 3*14-2*20

   = 3*(34-20*1) - 2*20

   = 3*34 - 5*20



RSA final slide
We can find d by finding (x,y) such that x*e + y*(p-1)(q-1) 
= 1 (assuming that gcd(e, (p-1)(q-1)) = 1) 

Then x*e = multiple of (p-1)(q-1) + 1, so x*e = 1 (mod 
(p-1)(q-1)

To recap

1. Person 1 generates n = pq, e and sends (n, e). They then use the Extended Euclidean algorithm 
on e and (p-1)(q-1) to find d

2. Person 2 encodes their message M by taking Me (mod n) and sends it to person 1
3. Person 1 decodes the message by taking (Me)d (mod n), getting back M



Prime factorization
Recall that primes are numbers p with only 1 and p as factors

Every integer has a unique prime factorization (product of 
prime powers)

120 = 2^3 * 3^1 * 5^1



Basic O(sqrt n) method
Essentially, brute force for the prime divisors of n

=============================================================================

Divide out all the 2’s

Loop over 3, 5, 7, … ~sqrt(n) and for each value divide n by that # until you 
can’t anymore

If the leftover is over 1, it’s a prime

84 —> 2^2 * 21 —> 2^2 * 3 * 7

123 —> 3 * 41

27 —> 3^3



Basic O(sqrt n) method analysis
Say that i is the thing doing the iterating. 

If a prime p divides n, n keeps those powers until i gets up to p; then we remove all of them

By going 2, 3, 5, 7, … sqrt(n), we remove all the powers of primes <= sqrt(n)

There can only be one prime divisor > sqrt(n), and it can only have exponent 1: otherwise, the 
product would be > sqrt(n)^2 = n

Thus, the thing left must be a prime

The number of times we have to divide is at most O(log n), since each time we divide n by 
something at least 2, and we iterate over O(√n) elements, so O(log n + √n) = O(√n)



Sieve of Eratosthenes method — precomputation
Essentially, the lowest thing not marked yet is a prime, and then we 
mark all multiples of that

Complexity: O(n log(log(n))

=======================================================================

Keep array lowest_divisor[n] that returns the lowest prime divisors 

Iterate i from 2 to n

If lowest_divisor[i] == 0

Iterate j multiples of i from min(i^2, n+1) to n, set 
lowest_divisor[j] = i if it’s 0 before



Sieve of Eratosthenes method
Now that we have the lowest_divisor array, we can just go through and 
repeatedly take out the lowest divisor

=============================================================

While (n > 1)

Add lowest_divisor[n] onto prime factorization

n = n / lowest_divisor[n]

This part takes O(log n) time, since you’re dividing by at least 2 each 
time

Total time is O(nlog(log(n)) + qlogn), where q is the number of queries 
of prime factorizations





Assorted Proofs
Aka stuff that I knew or was able to find 

within like 20 minutes of surfing google and 
college websites



Proof of Euclidean Algorithm
Say that a < b; we’ll use the notation x | y means y is divisible by x

Let b = aq + r, 0 <= r < a (this is division)

gcd(a, b) | b, gcd(a, b) | aq, => gcd(a, b) | b - aq = r; since gcd(a, b) | a and gcd(a, b) | r, 
gcd(a, b) | gcd(a, r)

gcd(r, a) | r, gcd(r, a) | aq, => gcd(r, a) | aq+r = b => gcd(r, a) | gcd(a, b)

Thus gcd(a, b) = gcd(r, a) (if they divide each other and are both positive, then they’re the 
same value



Proof of complexity of Euclidean Algorithm
Say we have gcd(a, b), a < b; we’ll prove that at each point in the process, the remainder 
b%a is less than b/2

If b < 2a, then our next step takes us to gcd(b-a, a), with b-a < b - b/2 = b/2

If b > 2a, then our next step takes us to gcd(b%a, a) with  b%a < a < b/2

If b = 2a, then we only have one more step

This means every two steps, the larger number is halved. After one step, the smaller number 
is the larger number, so it takes about 1 + 2log(min(a, b)) time, thus O(log(min(a, b))



Proof of extended euclidean algorithm
Recursive algorithms lend themselves well to proofs by induction. We’ll induct on min(a, b) 

Obviously if a == 0, 0*0 + 1*b = gcd(0, b) = b, so the base case works

Assume that the function returns correct x, y for all lower min(a, b). We’ll show it gives working integers for (a, b)

If xr + ya = d, then substituting, x(b-ak) + ya = d, so a(y-kx) + bx = d

Recall that gcd(a, b) = gcd(r, a) = d



Sieve of Eratosthenes time complexity proof

For each prime p, we go through less than (by about a constant factor) n/p of its 
multiples: thus, we need the complexity of the sum of the reciprocals of primes up to n

You can prove rigorously using formulas for the sum of the prime numbers under n that the -p 
term does not matter to the overall complexity



Sieve of Eratosthenes time complexity proof
- Choose one value from each parentheses for the prime power; 
for instance, for 1/(2^2*3), it’s 1/(2^2) * 1/3 * 1 * 1 * 1….
 - geometric series formula
- taking log of both sides and using log(ab) = log a + log b
- using the fact that log(1-x) = -x - ½ x^2 - 1/3x^3 + … for 0 < 
x < 1 

- plugging in 1/p as x to the above and separating the first 
terms; the next bit of work is to show that the other part 
converges, or is bounded by a constant

- ½ < 1, ⅓ < 1, etc obviously
- again geometric series formula
- the sum of the 1/(p^2 - p) is less than sum of 1/(k^2-k) 
for all integers k, which converges by telescoping: it’s 
1/(k-1) - 1/k + 1/k - 1/k+1 + … , so it’s equal a constant

- the fact that complexity of 1/1 + 1/2 + … + 1/n = log n



Proof of two propositions behind miller-rabin
If p is prime, a2 = 1 (mod p) means p | a2-1, or p | (a-1)(a+1)

Since p is prime, this can only happen if p | a-1 or p | a+1, so a = 1, -1 (mod p)

To prove Fermat’s Little Theorem quickly: note that {1, 2, … p-1} are all relatively prime to p. 
Also, {a, 2a, … a(p-1)} are all distinct mod p since otherwise ia = ja —> (i-j)a = 0 —> i = j

Since they’re the same numbers, 1 * 2 * … * p-1 = a * 2a * … * a(p-1) = ap-1 * 1 * … * p-1 
—> ap-1 = 1 (mod p)

Proving the ¾ number is way way too hard for a short lecture


