Unleashing the Potential of Machine Learning for Efficient Analysis of Solar Observations
Carlos José Díaz Baso
Rosseland Centre for Solar Physics, Institute of Theoretical Astrophysics, University of Oslo, N-0315 Oslo, Norway
carlos.diaz@astro.uio.no
2
¿Big Data?
IRIS (2013-now) ~ 61 TB*
*Level 2
DKIST, EST, SST ~ TB/h/instr
Numbers courtesy of Bart De Pontieu, Marc DeRosa, Ryan Timmons (10/2022)
Hinode/SOT (2006-now) ~ 35 TB*
*Level 1 (FG) + 1&2 (SP)
3
Exploration and dimensionality reduction
Typical questions of someone that recently got a big dataset:
or contain just redundant information?
4
Dimensionality reduction: Principal Component Analysis
1.- Find the “principal components” basis
2.- Project the data into a truncated version of it.
What is the basic idea behind PCA?
Why is it useful in solar observations?
Martínez González et al. (2008a)
compressibility
(e.g. Asensio Ramos et al. 2007; Asensio Ramos & López Ariste 2010)
5
Dimensionality reduction: PCA applications
Martínez González et al. (2008a,b)
Denoising
Casini et al. (2012, 2021)
Removal of fringes
(e.g. Asensio Ramos et al. 2007; Asensio Ramos & López Ariste 2010; Paletou 2012; Pastor Yabar et al. 2018; Trelles Arjona et al. 2021)
6
Dimensionality reduction: PCA applications
Ruiz Cobo & Asensio Ramos (2013)
(e.g. Rees et al. 2000; López Ariste & Casini 2002; Skumanich & López Ariste 2002; Casini et al. 2005; Casini et al. 2009, 2013; Sainz Dalda et al. 2019)
PCA inversion
Socas-Navarro et al. (2001)
(e.g. Quintero Noda et al. 2015, 2016; Felipe et al. 2016, Griñón-Marín 2021)
PCA deconvolution
7
Finding patterns
Once we have processed our dataset …
8
Clustering: K-means algorithm
(e.g., Pietarila et al. 2007; Viticchié & Sánchez Almeida 2011; Panos et al. 2018; Sainz Dalda et al. 2019; Bose et al. 2019; Rouppe van der Voort et al. 2021; Robustini et al. 2019; Joshi & Rouppe van der Voort 2020b; Kuckein et al. 2020; Bose et al. 2021a,b; Barczynski et al. 2021; Nóbrega-Siverio et al. 2021; Kleint & Panos 2022; Joshi et al. 2022; Thoen Faber 2022).
1.- Define the K clusters and draw the centroids
2.- Assign each point to the closest centroid (Euclidean distance)
3.- The centroids are updated as the average of their cluster
λ1
λ2
9
K-means applications
Viticchié & Sánchez Almeida (2011)
QS magnetic field
Bose et al. (2019, 2021a,b)
Type-II Spicules
10
K-means applications
Brandon Panos et al. (2018)
Nóbrega-Siverio et al. (2021)
(e.g. Magnus Woods et al. 2021)
PCA and k-means are not the only ones
11
Clustering techniques
Dimensionality reduction
12
Classification and prediction
Once you know the interesting part in our dataset …
13
Classification and prediction
Support Vector Machines
margin
Bobra et al. (2015, 2016)
Flare prediction
(e.g. Yuan et al. 2010; Nishizuka et al. 2017; Florios et al. 2018)
14
Nonlinear modeling → Neural networks
What happens if this relation that we try to model is very non-linear?
A
B
Input Free parameters Output
15
Intensity + Polarization
Solar
model
Radiative transfer
NLTE Radiative transfer calculations
non-LTE pop. → Intensity + Polarization
Solar
model
Neural Network
Chappell & Pereira (2021)
Vicente Arévalo et al. (2021)
1D / departure coefficients
3D / LTE → non-LTE populations
Hα
16
(e.g. Carroll et al. 2001, 2008; Socas-Navarro, H. 2003, 2005; Sainz Dalda et al. 2019; Milić et al. 2020; Gafeira et al. 2021; Centeno et al. 2022)
Intensity + Polarization
Solar
model
Radiative transfer
Intensity + Polarization
Solar
model
Neural Network
Spectropolarimetric inversions
Sainz Dalda et al. (2019)
Synthesis + Inversions ~ 103 - 106 faster
17
Accelerating the inference …
Kianfar S. et al. (2019)
… in large FOVs
Morosin R. et al. (2022)
Ca II 8542 Å
Net radiative losses
CRISP@SST
… in long time-series
Autoencoders (the non-linear PCA)
18
Sparse Representation
Flint S. & Milić I. (2021)
Encoder
Decoder
Input Data
Encoded Data
Reconstructed Data
(e.g. Skumanich & López Ariste 2002; Sadykov et al. 2021; Sergey Ivanov et al. 2021)
19
If I want to analyze a megapixel image (106), do I need a neural network with O(>106) learnable parameters?
Convolutional Neural Networks
github.com/vdumoulin/
Input data
Output data
Translational Equivariance
visual.cs.ucl.ac.uk/pubs/harmonicNets
f(g(x))=g(f(x))
20
Automatic catalogues
Armstrong & Fletcher (2019)
The image as a “whole”
Automatic segmentation
Xulong Guo et al (2022)
(e.g. Ahmadzadeh et al 2019; Zhu et al. 2019; Gaofei Zhu et al 2021, Illarionov & Tlatov (2018); Diercke et al 2022)
21
Díaz Baso et al. (2018)
Image deconvolution
(e.g. Asensio Ramos et al. 2018, 2021; Armstrong et al. 2021; Wang et al 2021; Deng et al 2021)
Using the information from nearby pixels
Asensio Ramos & Díaz Baso (2019)
Hinode PSF-compensated Stokes inversions
1D inversion code
Convolutional Network
22
Solar image denoising
Ca II 8542 A
Díaz Baso et. al (2019)
CNNs applications
(e.g. Eunsu Park et al. 2020)
Horizontal velocity fields
Benoit Tremblay et al. (2020, 2021)
(e.g. Asensio Ramos et al. 2017; Ishikawa et al., 2022)
23
Fibril orientation
Other applications
(Gravitational) wave classification
Plamen G. Krastev (2020)
Haodi Jiang et al (2021)
(e.g. Heming Xia et al. 2020, Richard Qiu et al 2022)
24
Enhancing CNNs with temporal information
Far-side activity detection
Broock et al. (2022)
(e.g. Felipe et al. 2019; Broock et al 2021; Zeyu Sun et al. 2022)
All that glitters is not gold
Challenges and future directions
25
- Why is this AR classified as a flare-producer?
Interpretability
Zeyu Sun et al. (2022)
To name a few methods:
(e.g. Kangwoo Yi et al. 2021)
Vishal Upendran et al. (2020)
Does your method know when it doesn’t know?
26
Friday, July 23, 2021 | Virtual Worldwide
Uncertainty quantification
27
A probabilistic perspective: conditional information
Designing observing sampling
Mutual information
Low correlation/ Medium correlation/ High correlation
Panos et al. (2021a,b)
Díaz Baso et al. (in prep)
(e.g. Szenicer et al. 2019; Lim et al. 2021; Salvatelli et al. 2022)
(e.g. Snelling et al. 2020)
28
A probabilistic perspective: inverse problems
forward modeling
inverse problem
29
Inherent in many problems
Wehrbein et al. (2021)
Input image
3D Pose
Input image
Lugmayr A. et al. (2020)
Super-Resolution
Pose estimation
Normalizing flows
30
NNs
λ
NFlows
λ
Rezende & Mohamed (2015), Dinh et al. (2016)
Normalizing flows
31
Díaz Baso et al. (2021)
(e.g. Osborne et al. 2019, Asensio Ramos et al. 2021)
Rezende & Mohamed (2015), Dinh et al. (2016)
N-LTE inversion
Height -
Normalizing flows → Diffusion models
32
Sohl-Dickstein et al. (2015), Yang & Ermon (2019), Ho et al. (2020)
Grizzly bear taking a selfie on the Golden Gate bridge on a windy day
Irish Terrier riding a horse in Patagonia and playing the harmonica
Cat with a yellow hat going down the stairs under water
Panda mad scientist mixing sparking chemicals, artstation
Ramesh et al. (2022)
→ valuable effort in complex inverse problems.
33
Summary and conclusions
34
Summary and conclusions
(e.g. scikit-learn - python)
35
What a time to be alive!
Summary and conclusions