
Welcome to Lecture 9:
Tree Recursion + Fractals

We will start at 10 AM

Announcements

● Project 3 will be released later today

● Victoria’s OH got rescheduled to today (Tuesday) 7 to 9 PM - online

only

● *Andrew out this week - no OH

● No class on Thursday, July 4th.

● Limited OH on Friday, July 5h

Today’s Topics

● Announcements

● Review

● Fractals

● Multiple recursive calls (tree)

● Practice Problems

Review from Last Lecture

● Intro to Recursion (Linear only)

○ Two main components to recursion:

■ Base Case: The simplest, most reduced case

■ Recursive Case

● Split the problem into smaller parts

● Invoke the recursive function

● Combine into a total output

● We can have multiple base cases and multiple recursive cases

● Data type of function will usually match the base case and recursive case

● When we call the recursive function, we open a new frame with an input

that has been reduced in some way (reduced meaning closer to base case)

Tree Recursion: Fractals

● “a complex geometric shape with a detailed structure that repeats

itself at any scale”

● A series of patterns that are repeated recursively

● We will have a problem like this on the midterm!

● Fractals in nature! Ex: seashells, spiral galaxies, trees, leaves, the

brain / neurons, veins, lightning bolts, rivers branching, etc.

Fractals

● We can build awesome and fun images!

● Let’s play around in Snap!

Fractals

Fractals

What is the first thing that
happens?

We move in a straight line!

Fractals

What is the first thing that
happens?

Fractals

What is the first thing that
happens?

We turn! Then we move.
Then turn again… etc.

Fractals

● How many times, do we see the bolded lines of the n=1 image in
n=2 image?

Fractals

● How many times, do we see the bolded lines of the n=1 image in
n=2 image? 2

Fractals

● How many times, do we see the bolded lines of the n=2 image in
n=3 image?

Fractals

● How many times, do we see the bolded lines of the n=2 image in
n=3 image?

Fractals

● How many times, do we see n=3 image in n=4 image?

Let’s Build it! We can trace our recursive fractal
based on n = 2.

We know the bolded lines are the
recursive calls.

● What happens first?

Start Here

Let’s Build it! We can trace our recursive fractal
based on n = 2.

We know the bolded lines are the
recursive calls.

● What happens first?
○ Turn
○ Move
○ Turn
○ Move
○ Recursive Call
○ Turn
○ Recursive Call

Start Here

Let’s Build it! Trace recursive fractal based on n = 2

The degrees we turn are 60 and
the recursive size is 1/3

Let’s Build it!

Fractals

● We can always trace the code, given the images at each level

● The sprite MUST end up in same direction it started in

● We MUST always have a base case!

● The number of times we see the image of n - 1 in n, tells us the

number of recursive calls we need in the fractal.

Definitions

● What is linear

recursion?

○ A function that

invokes itself as part

of the definition

● What is tree recursion?

○ A recursive function

with multiple

recursive calls

Linear Recursion

func(4) 5
Calling sum 1 to (5):

func(3) 4

func(2) 3

func(5)

func(1) 2

1

1

2

6

10

15

Tree Recursion Example

● Objective: Write a function that returns the fibonacci number:
● Fibonacci Numbers: A sequence of numbers where each number is the

sum of two before it: 1, 1, 2, 3, 5, 8, 15….

0 1 2 3 4 5 6

1 1 2 3 5 8 15

 1 + 1 = 2

1 + 2 = 3

 2 + 3 = 5

3 + 5 = 8

 5 + 8 = 15

Tree Recursion Example

● What might be the base case?

● Why will we need to recursive calls?

● What do we put into the recursive calls / how are they different?

Tree Recursion Example

● What might be the base case? n < 2

● Why will we need to recursive calls? Because it adds the sum of last

two number

● What do we put into the recursive calls / how are they different? n -

1 and n - 2

Tree Recursion Example

●

Tree Recursion

func(4)
Calling sum 1 to (5):

Count all the 1’s we get

8 which is fib(5)
func(3)

func(2)

fib(5)

func(1)

1

func(3)

func(2) func(1)

func(1) func(0)

func(2)

func(1) func(0)
func(1)

func(0)

1

1 1 1 1 1

1

Tree Recursion Example

● Objective: Write a function that takes in a value of money and a list of
all the denominations. Your job is to make change / find all
combinations of denominations we can make to create that value.

● Note: You can reuse numbers from the list infinitely!
● Note: If we create a combination that is larger than the value, we

shouldn’t count it.
● Output: A number - the number of combinations

● 4 ways to make change for 10:
○ 1 ten | 1 five and 5 ones | 2 fives | 10 ones

Tree Recursion Example: Count Change

● What are the base cases? Should we have more than one?

● When do we want to count the combination, and when do we not

want to count it?

● What are the recursive cases?

Tree Recursion Example: Count Change

● What are the base cases? Should we have more than one?
○ There will be two cases. Value = 0 or our list of denominations is

empty
● When do we want to count the combination, and when do we not

want to count it?
○ Only if we successfully find a way to make change. So, we will

keep subtracting a denomination from value. If value is = 0,
then we successfully found a combo. If value < 0, we DON'T
count it

● What are the recursive cases?
○ All but first of (denominations) and value - item 1 of

denominations

Tree Recursion Example: Count Change

●

Tree Recursion Example: Count Change

●

10

[5, 10, 25]
9

[1, 5, 10, 25]

Tree Recursion

func(10, [5, 10, 25])Calling count change(10)

with [1, 5, 10, 25]
func(10, [10, 25])

func(10, [25])

func(10, [1, 5, 10, 25])

func(10, []

0

func(9, [1, 5, 10, 25])

func(9, [5, 10, 25]) func(8, [1, 5, 10, 25)

func(9, [10, 25)
func(4, [5, 10, 25

func(5, [5, 10, 25])

func(5, [10, 25)

func(0, [5, 10, 25)func(0, [10, 25)

func(-15, [25]

0

1
1

func(5, [25]
func(-5, [10, 25)

0func(5, []]
func(-20, [25]

0 0

func(9, [25) func(-1, [10, 25)

0

func(9, []) func(-14, [25]

0
0

1

1

Count Change

● Why do we need this part:

Count Change

● Why do we need this part:

● What would have happened if we had just called the same values on

both recursive calls? Like this:

● We would only ever get 0 or 1 depending on the inputs!

Count Change with Incorrect Structure

● Count change (10) with [1, 5, 10, 25]

● Count change (9) with [5, 10, 25]

● Count change (4) with [10, 25]

● Count change (-6) with [25]

● Returns 0!

Count Change

http://www.youtube.com/watch?v=WUF-mTvH7FE

Tree Recursion Example

● Objective: Given a very nested list, write a function that unnests the

list to become a 1D list.

Tree Recursion Example

● Objective: Given a very nested list, write a function that unnests the

list to become a 1D list.

Tree Recursion Example

Trees
func(10, [5,
10, 25])● Trees are a structures that

allows us to represent our

data.

● We can represent any data as

a tree (which can be just

deeply nested lists)

● When we need to grab a

value of a tree, we will need

to “traverse” the tree

○ We can do this more

easily using recursion!

func(10,
[10, 25])

func(10,
[25])

func(10, [1, 5,
10, 25])

func(1
0, []

0

func(9, [1, 5,
10, 25])

func(9, [5,
10, 25])

func(8, [1, 5,
10, 25)

func(9,
[10, 25)

func(4, [5,
10, 25

func(5, [5,
10, 25])

func(5,
[10, 25)

func(0, [5,
10, 25)

func(0,
[10, 25)

func(-1
5, [25]

0

1 1

func(5,
[25] func(-5,

[10, 25)

0func(
5, []] func(-2

0, [25]0 0

func(9, [
25)

func(-1,
[10, 25)

0

func(
9, [])

func(-1
4, [25]

0 0

1

1

Trees
func(10,
[5, 10,
25])

● They commonly have these attributes:
● Nodes:

○ Each element is a node
● Depths

○ How nested or long it is
● Parents:

○ Which nodes it stems from
● Children

○ Which nodes stem from it
● Root:

○ The first value on the top
● Leaves:

○ The bottom values that have no
children

func(10,
[10, 25])

func(10
, [25])

func(10, [1,
5, 10, 25])

func(
10, []

0

func(9, [1,
5, 10, 25])

func(9,
[5, 10,
25])

func(8, [1,
5, 10, 25)

func(9,
[10, 25)

func(4,
[5, 10,
25

func(5,
[5, 10,
25])

func(5,
[10, 25)

func(0,
[5, 10,
25)

func(0,
[10, 25)

func(-
15,
[25]

0

1 1

func(5,
[25] func(-5,

[10, 25)

0func
(5,
[]]

func(-
20,
[25]

0 0

func(9,
[25)

func(-1,
[10, 25)

0
func
(9,
[])

func(-
14,
[25]0 0

1

1

