F"a-ﬁ—-ﬁ—

i Snap!

i Welcome to Lecture 9:

/ Tree Recursion + Fractals ‘
{ We will start at 10 AM

I i
' w

Im-"x!-m-"x—m-"ﬁ

xS O e e SR = S A S T
Announcements /

i ® Project 3 will be released later today ‘

' e Victoria’s OH got rescheduled to today (Tuesday) 7 to 9 PM - online ‘

only
\ e *Andrew out this week - no OH '
" e No class on Thursday, July 4th. ‘

e Limited OH on Friday, July 5h

= u

oS e e A O e S
‘ Today’s Topics

Announcements

N

N

/

Review
Fractals

Multiple recursive calls (tree)

i
Practice Problems '
i

S e G A e S e S
e §

Review from Last Lecture /
® Intro to Recursion (Linear only) ‘
o Two main components to recursion: ‘

m Base Case: The simplest, most reduced case
m Recursive Case '
e Split the problem into smaller parts \

/

® Invoke the recursive function
e Combine into a total output

N e We can have multiple base cases and multiple recursive cases (
e Data type of function will usually match the base case and recursive case ‘

e When we call the recursive function, we open a new frame with an input
that has been reduced in some way (reduced meaning closer to base case)

mu-m-m

S N o SR S o S/ S S 2% e S/
e § e §

Tree Recursion: Fractals

® “acomplex geometric shape with a detailed structure that repeats

l . i L ,
' itself at any scale” |

W
® A series of patterns that are repeated recursively
e We will have a problem like this on the midterm! i
" e Fractals in nature! Ex: seashells, spiral galaxies, trees, leaves, the
brain / neurons, veins, lightning bolts, rivers branching, etc.

SAYa

i_i*-m—q’-m—f-
Fractals

e We can build awesome and fun images!

l

' ® Let’s play around in Snap!

|
w
| |
| |
I 1
w

P—m—-_;—

4

i VAN l{

| T |

i Fractals

A R . T e S ."‘A

. S o TR - It R S R 7 i G
P e e

i Fractals /
. |
' What is the first thing that l‘
N happens? '
" We move in a straight line!)

e
Fractals /

What is the first thing that ‘
/ \ happens? l‘
'

%

/

g

l What is the first thing that
‘ / \ happens? l‘

We turn! Then we move. '
" Then turn again... etc. ;

Fractals ‘

. S o TR - It R S R 7 i G
P e e

i Fractals /
N

|
i N\ a\

/
i

i e How many times, do we see the bolded lines of the n=1 image in (
| |

n=2 image?
' I‘

Immx P . e R Y e T e

. S o TR - It R S R 7 i G
P e e

i Fractals /
N

|
i N\ a\

/
i

i e How many times, do we see the bolded lines of the n=1 image in (
| |

n=2 image? 2

Immx P . e R Y e T e

i_i*-m—q’-m—f-
Fractals

[

: ‘

l n =2 n =3

i e How many times, do we see the bolded lines of the n=2 image in (
| |

n=3 image?
' I‘

Immx P . e R Y e T e

i_i*-m—q’-m—f-
Fractals

[

: ‘

l n =2 n =3

i e How many times, do we see the bolded lines of the n=2 image in (
| |

n=3 image?
' I‘

Immx P . e R Y e T e

~ iy T~ T T~
‘_—-!__—-!__.—
!

}

\
l
\
|

Fractals

R VEER S

n =3 n =4

e How many times, do we see n=3 image in n=4 image?

N

VAN T
e e

Immx P . e R Y e T e

= u

/

i Let’s Build it!

|\

Start Here

L R T e/ g TR S e
e § e §

We can trace our recursive fractal
based on n = 2.

We know the bolded lines are the ‘

recursive calls.

e What happens first? '
)

= u

‘ Let’s Build it!

N

|\

Start Here

LG/ R TS o R/ S - R 2 e S/
e § e §

We can trace our recursive fractal
based on n = 2.

We know the bolded lines are the ‘
recursive calls.

e What happens first? '
O Turn ‘

Move

Turn

Move |

Recursive Call ‘

Turn ‘
Recursive Call l

O O O O O O

Imm DA e L . T e e

= u

LG/ R TS o R/ S - R 2 e S/
e § e §

‘ Let’s Build it! Trace recursive fractal based on n =2 /
The degrees we turn are 60 and { ‘
M the recursive size is 1/3

| |

l n=1 n =2

/
/

Let’s Build it!

= > P iE=—rt =
Fractal level: '(level size: [size

if < level =

T—

move (size steps

- —

turn 4 @) degrees
move ’m steps

turn (3 &) degrees
move | " size / 6 steps

=
turn & P degrees
| g
Fractal level: ((level — &P

|
turn § P degrees
| S

Fractal level: ([level — &P

= u

S SR« S " ——
‘ Fractals /

y ° We can always trace the code, given the images at each level ‘
' ® The sprite MUST end up in same direction it started in ‘
e We MUST always have a base case!
N ® The number of times we see the image of n- 1 in n, tells us the '
)

" number of recursive calls we need in the fractal.

i

N

i
A T e U . e e A‘

Definitions

N

recursion? [report [T

o A function that i) |

invokes itself as part report mrecursion: sum from 1 to n: ,|

o]

of the definition
e What is tree recursion?
o A recursive function
with multiple
recursive calls

Linear Recursion

l

Calling sum 1 to (5):

P—-m‘f—- — A
; 'f : func(5)]

N\

= u

LG/ R TS o R/ S - R 2 e S/
e § e §

‘ Tree Recursion Example /

® Objective: Write a function that returns the fibonacci number: ‘
& o Fibonacci Numbers: A sequence of numbers where each number is the
' sum of two beforeit: 1, 1, 2, 3,5, 8, 15.... l‘
N 0 1 2 3 4 5 6
" 1 1 2 3 5 8 15 ‘
l 1 + 1 = 2 \
‘ 1 + 2 = 3

4

i p 3 = 5 | ‘
o 3 F 5 = 8 | ‘
' 5 + 8 = 15 l
Im."x P . e R Y e T e

oS e e A O e S
Tree Recursion Example ,

l

' e Why will we need to recursive calls?

e What might be the base case?

&

‘ e \What do we put into the recursive calls / how are they different? '
)

oS e e A O e S
Tree Recursion Example ,

l ® What might be the base case? n<2
' e Why will we need to recursive calls? Because it adds the sum of last

two number
\ e What do we put into the recursive calls / how are they different? n - '
" landn-2)

> . s ey e
.-. /A Y « / >a

Tree Recursion Example /

fibonacci at n: | |) —

report | fibonacciat n: (1)~ (1

. S o TR - It R S R 7 i G
P e e

!

|

i

)

Tree Recursion

Calling sum 1 to (5):

' Count all the 1's we get

8 which is fib(5)

fib(5)

func(4)

func(3)

func(2) func(1)
func(1) func(0) é

Tree Recursion Example

® Objective: Write a function that takes in a value of money and a list of
all the denominations. Your job is to make change / find all
combinations of denominations we can make to create that value.
Note: You can reuse numbers from the list infinitely!
Note: If we create a combination that is larger than the value, we
shouldn’t count it.
Output: A number - the number of combinations

e 4 ways to make change for 10:
o 1ten | 1fiveand5ones | 2 fives | 10 ones

LG/ R TS o R/ S - R 2 e S/
e § e §

Tree Recursion Example: Count Change /
® What are the base cases? Should we have more than one? ‘
e \When do we want to count the combination, and when do we not l‘

want to count it?
e \What are the recursive cases? '
)

= u

L o T 7 S O TR - i G
e § e §

4

‘ Tree Recursion Example: Count Change

® \What are the base cases? Should we have more than one?

N

' o There will be two cases. Value = 0 or our list of denominations is ‘
empty
‘ e When do we want to count the combination, and when do we not
\ want to count it?
" o Only if we successfully find a way to make change. So, we will ‘
I keep subtracting a denomination from value. If value is = 0,
‘ then we successfully found a combo. If value < 0, we DON'T
count it

4

e \What are the recursive cases? ‘

> o All but first of (denominations) and value - item 1 of ‘
l denominations

T 4‘&.

R e Y . T e R =

S8

Tree Recursion Example: Count Change

count change on value: (value # with - demoninations:
denom :

m < |6 {3) » or - is (denom empty?
report [0
else if © (value

| report [T
elseif v@)
report

count change on value:

all but first of (denom

count change on value: | 7ZTE 0 S S ETN 1 w TR RN

demoninations: (LITT)

report [0

report [1

report

‘count change on value:

. |
]_U_*With" demoninations:

[5,10, 25]

count change on value:

] 9

demoninations:

» g e

1,5,10, 25

Tree Recursion Example: Count Change

with

= u

‘ Tree Recursion

N

Calling count change(10)
with [1, 5, 10, 25]

N/ D T 7% e R/ N R 7S I e
e § e §

func(10, [1, 5, 10, 25])

/\

func(10, [5, 10, 25])

func(10, [10, 25])

/\

func(5, [5, 10, 25])

func(9, [1, 5, 10, 25])

N

func(10, [25])

func(0, [10, 25)

func(9, [5, 10, 25])

func(0, [5, 10, 25)

N\

func(5, [10, 25) *

func(9, [10, 25)

func(10, []

func(-15, [25]

— \’

func(9, [25)

func(-1, [10, 25)

AN

func(-14, [25]

Count Change

e Why do we need this part:

"count change on value: @ with demoninations:

} all but first of (denom

count change on value: | (I 5 = STETN 1 w S8 00T with

demoninations:

"count change on value: @ with demoninations:

Count Change
}count change on value: with

e Why do we need this part: |demeninations:

e What would have happened if we had just called the same values on
both recursive calls? Like this:

count change on value:

demoninations: E1IRTTE i1 E@O MG ENGT

count change on value: | 7|1) — fio0 &R of (Hénom

demoninations: 1RSSR GENLT

Count Change with Incorrect Structure

Count change (10) with [1, 5, 10, 25]
Count change (9) with [5, 10, 25]
Count change (4) with [10, 25]
Count change (-6) with [25]

Returns 0!

count change on value: | =] — "item &R, of (denom
demoninations: §=1I RS T & &8 ELTT

count change on value: | "Z{[71) — "item @E% of | denom
demoninations: E1RUTETE SR G ENLT

——WR

Count Change

http://www.youtube.com/watch?v=WUF-mTvH7FE

Tree Recursion Example

e Objective: Given a very nested list, write a function that unnests the
list to become a 1D list.

unnest list:

. e

Tree Recursion Example

list to become a 1D list.

WK all but first of E

unnest list:
list

- e

N in front of B

e Objective: Given a very nested list, write a function that unnests the

S8

Tree Recursion Example

unnest list: ‘m

if is (input empty?

report @B
else if / is item €E> of (input a list |2

reort
ap end

(unnest list: ' item @E% of (input (unnest list: all but first of (input

else if v ¢ .
report

> ~—

(1. @K% i input)) in front of [unnest list: all but first of (input

= u

‘ Trees

® Trees are a structures that

N
' allows us to represent our

data.

func(10, [1, 5,

10,

func(10, [5,

func(10,

func(s, [5,

[10}\ 10, 25]

S S T X/ S e S S
G A e s S e

(1,5, ‘

func(8, [1, 5,

2

\ ® We can represent any data as func(1Q,

a tree (which can be just

func(1

func(-1

\

value of a tree, we will need

o We can do this more
easily using recursion!

W .

deeply nested lists) % S'%
e When we need to grab a

to “traverse” the tree @‘/ﬂ

. T e SR . e N T T e

= u

‘ Trees P ——

e They commonly have these attributes:

S e e e S e e SO
e g

M o Nodes: func func(s,
' o Each element is a node ¥ :
°® Depths func(10 [func(Q0—]
\ o How nested or long it is 1 dunc
e Parents:
" o Which nodes it stems from
l e Children
o Which nodes stem from it
‘ e Root:
o The first value on the top
M ©® Lleaves:
' O The bottom values that have no
I children
. T e SR . e N T T e

