

MAE 189 Capstone Design Midterm Presentation

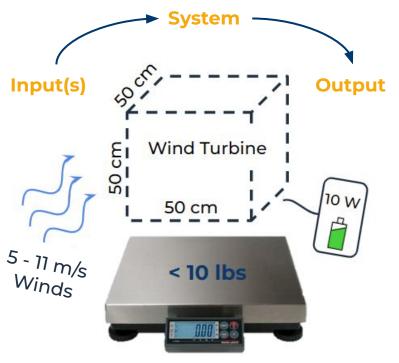
Group 9: Trust in the Gust

Jacob Brooks, Dennis Chua, Jason Fetherman, Anthony Machuca IV

Project Definition

Inspired by the U.S. Department of Energy's Collegiate Wind Competition, this team must design and manufacture a <u>Small-Scale Wind Turbine</u> with the following system requirements:

1) Must be able to withstand wind speeds of 18 m/s


2) Must produce at least **10 W** of power at a wind speed between **5 - 11 m/s**

3) Must generate this power irrespective of wind direction

4) Must fit within cube of side length **50 cm** (without mounting assembly)

- 5) Can be assembled/disassembled easily
- 6) Must not weigh more than 10 pounds
- 7) Budget cost must not exceed **\$750**

8)Must be compatible with typical off-the-shelf power bank storage device

Design Attribute	0	с	F	м	Design Attribute	0	с	F	м
Design Attribute	0	Ľ	r	IVI	Design Attribute	0	C	r	IVI
Must convert mechanical energy from wind to electricity			1		Should be portable and lightweight	1			
Must withstand winds up to 18 m/s		1			Must be safe to users and wildlife	1	1	3	
Must produce minimum 10 W between wind speeds of 5 - 11 m/s		1			Should have minimal noise generation from motor	1			
Must generate 10 W irrespective of wind direction	1	1			Should be capable of charging more than one accessory at a time	1			
Must fit inside cube with 50 cm side length without mounting assembly		1			Should fully charge power bank in less than 8 hrs under steady wind conditions	1			
Can be assembled and disassembled easily	1				Should be operable in rain and other weather conditions without worry	1			
Must weigh less than 10 lbs		1			Can be Horizontal-Axis Wind Turbine (HAWT)				1
Must not exceed a cost of \$750		1			Can be Vertical-Axis Wind Turbine (VAWT)				1
Must be compatible with a typical off-the-shelf power bank storage device	1	1			Motor can be attached directly to propeller or connected via gear train				1

Design Objectives

- Safety -

user safety, environmentally friendly

Efficiency -

power generation (10 W), aerodynamics, compatibility, 1 person assembly in < 5 mins

- Portability -

lightweight (<10lbs), deconstructable into at least 2 parts, small size (50cm cube) -

- Durability -

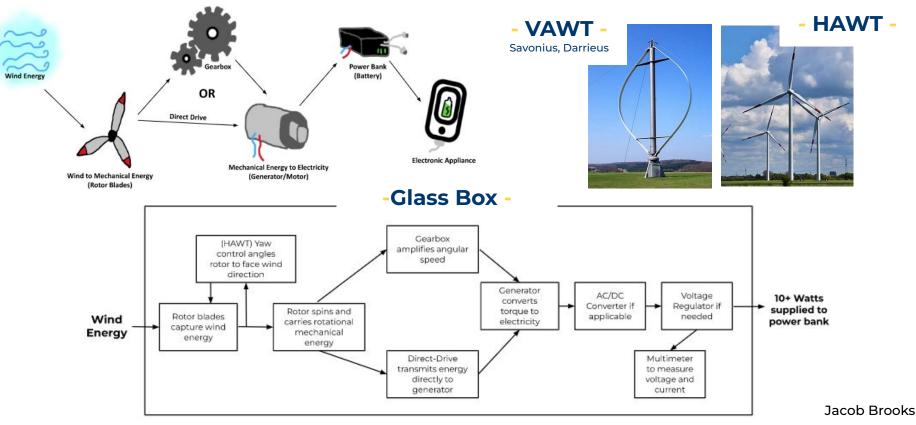
strong (18m/s winds), product longevity (at least 1 year w/ small size)

Design Means

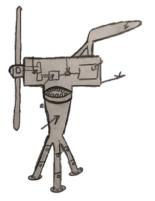
- HAWT or VAWT -

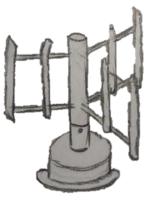
Power Transmission -

Gearbox, direct-drive, DC/AC Motor


Jacob Brooks

Preliminary Research


- Types of Wind Turbines -



Preliminary Design Sketches

Concept 1

HAWT

3 Blade Rotor

Small Top Rear Fin

2 Gear Trains (one for transmission one for rotation)

3 legged collapsible stands

Concept 2

HAWT

3 Blade Rotor

Large Central Rear Fin

Roller Bearing

Cylinder Support

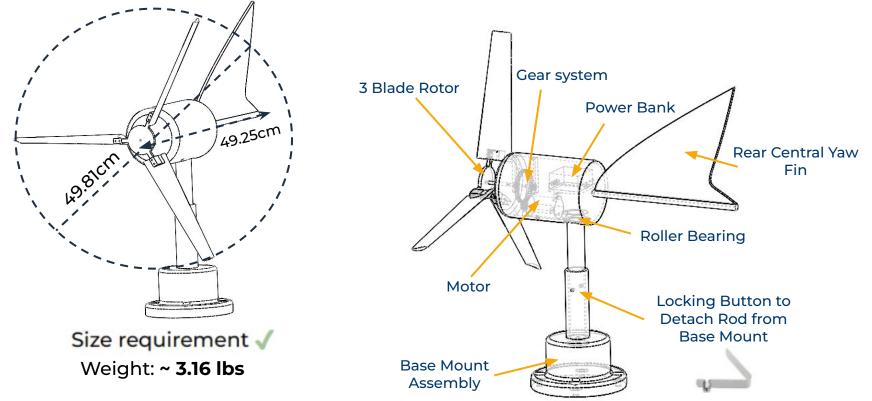
Concept 3

VAWT (H-Darrieus)

6 Blade Rotor

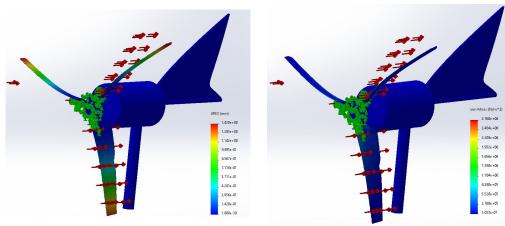
Detachable base with Locking Button

Roller Bearing


- Yaw Trade Study -

Yaw for HAWT	1(Bad) -> 5(Go	ood)			
Design Choice	Weight	Control Accuracy	Interference with Turbine	Ease of Manufacturing	Score Total
Importance Factor	0.9	1	0.5	0.7	
Small Top Rear Fin	4	2	4	4	10.4
Large Central Rear Fin	3	4	3	4	11.0
Shaft/Mount Fin	2	3	4	3	8.9
Active Yaw with Sensor and Motor Control	2	5	5	1	10.0

Jason Fetherman

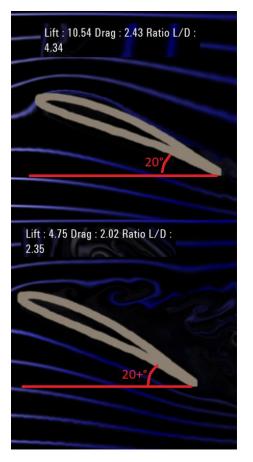

- Engineering Drawings -

UCI Samueli

- Static Test Simulation Results -

Wind Speed	Wind Pressure	Max Stress	Max Displacement		
5 m/s	15.325 Pa	0.213 MPa	.1102 mm		
11 m/s	74.173 Pa	1.031 MPa	.5332 mm		
18 m/s	198.612 Pa	2.76 MPa	1.428 mm		

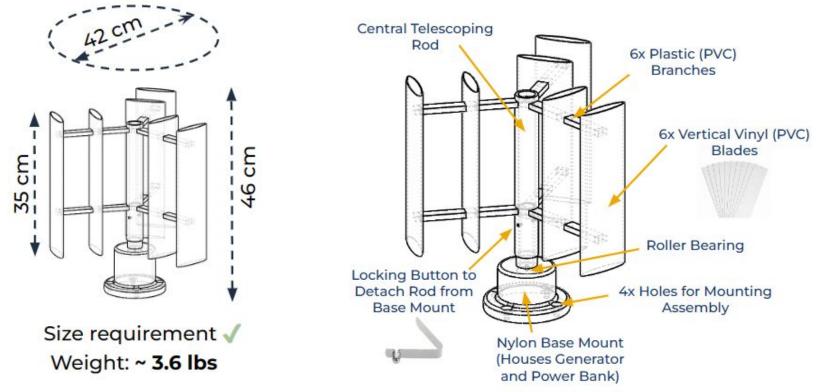
Yield Strength for Nylon is 40-100 MPa


- Animated Assembly -

UCI Samueli

Concept Selection (HAWT Design)

one important design consideration for the HAWT is the wing angle of attack


Angle of attack should maximize lift for the wing blade to spin

UCI Samueli

Engineering Drawings -

UCI Samueli

Concept Selection (VAWT Design)

- Static Test Simulation Results -

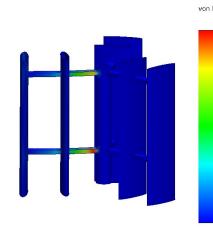
6.758 6.082

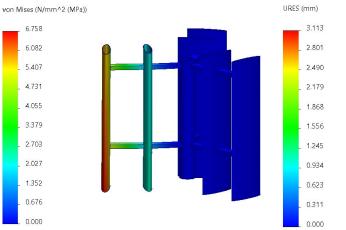
5.407

4.731

4.055

3.379

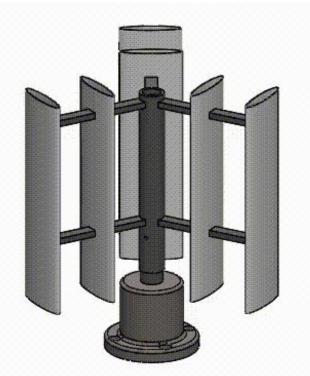

2.703


2.027

1.352

0.676

0.000

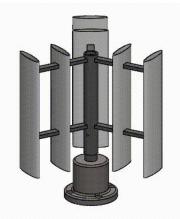


Wind Speed	Wind Load	Max Stress	Max Displacement
5 m/s	1.173 N	0.521 MPa	0.240 mm
11 m/s	5.679 N	2.524 MPa	1.163 mm
18 m/s	15.207 N	6.758 MPa	3.133 mm

Yield Strength for PVC Vinyl is usually around 55 MPa

- Animated Assembly -

UCI Samueli School of Engineering


Jacob Brooks

Concept Selection (HAWT vs VAWT)

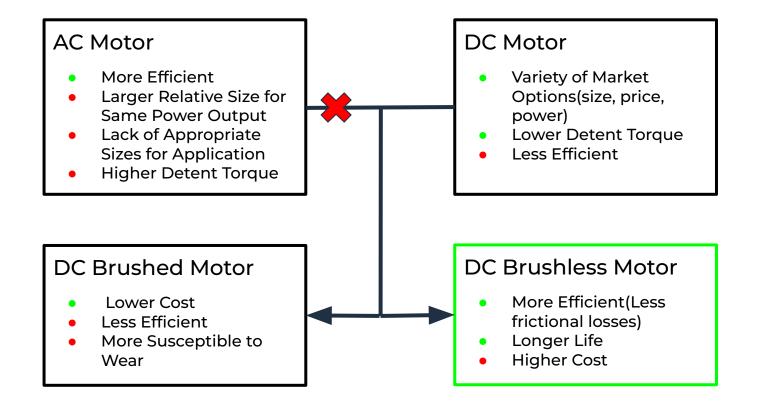
- VS -

Design Choice Trade Study 1(Bad) -> 5(Good)							
Design Choice	Importance Factor	HAWT	VAWT				
Weight/Costs	0.7	5	5				
Efficiency	1	5	3				
Ease of Manufacturing	0.6	3	4				
Control	0.8	3	5				
Material Strength	0.8	5	4				
Total	Score	16.7	16.1				

HAWT

Better **Efficiency** at Power Generation

Stronger, and More Durable Design



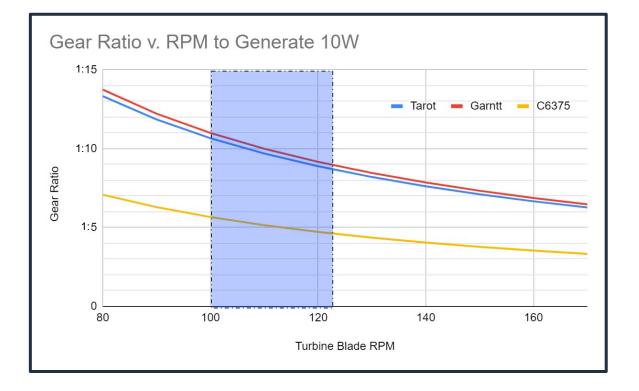
Easier to Build

No Yaw Control Needed, Works in All Wind Directions

Concept Selection (Motor & Power Bank) UCI Samueli School of Engineering

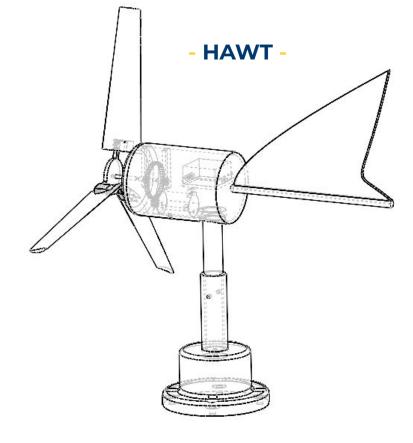
Jason Fetherman

Motor									
Link	KV	Weight	Voltage Capacity	Amperage Capacity	Price				
<u>Tarot</u>	320	145g	24V	22.9A	\$67.99				
GARTT	330	170g	30V	25A	\$43.99				
<u>C6374</u>	170	861.8g	42V	69A	\$52.99				


and the
S. CORRELS
TAROT 4114 11 KVI 320
4114-11 KV:320 MADE IN CHINA & CERONS

V	

Power Bank				
Link	Voltage	Amps	Weight	Price
Battery Guy	6V	2A	243.8g	\$15.95
Tenergy	12V	2A	225g	\$21.99
TalentCell	12.6V	3A	190g	\$28.79


Requirement: Must produce at least **10W** of power at a wind speed between **5 - 11 m/s**

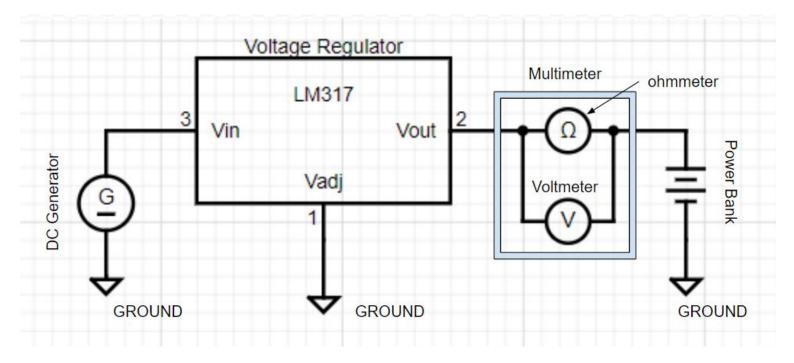
For wind speeds of 5-11 m/s Rotor Speed ≅ 80-160RPM

Equations Used For Gear Ratio Calculation: P = IV $KV = RPM/V = \omega_{Motor}/V$ Gear Ratio = $\omega_{Rotor}/\omega_{Motor}$

Design to generate 10W around 105-125RPM using a gear ratio **1:8.5 - 1:11**

Proposed Detailed Design

- Major Components -


3 Blades - MTS (3D-Printed) Rotor Hub - MTS (3D-Printed) Nacelle - MTS/OTS **Central Rear Yaw Fin** - MTS Motor - OTS **Gearbox** - MTS **Roller Bearing** - OTS Tower - OTS (PVC Piping) Locking Button - OTS **Base** - MTS/OTS

*OTS = Off-The-Shelf MTS = Made to Spec

UCI Samueli

- Circuit Schematic -

Anthony Machuca

Remaining Schedule

Project Timeline	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10
Org Chart & Background Research										
Concept Generation										
Preliminary Design (Concept Selection)										
Market Survey, Sizing, Optimization										
Detailed Design (CAD Model, Schematics)						D				
Prototype Manufacturing (Subassemblies)										
Full Prototype Assembly										
Prototype Testing & Validation										
Deliverables : Prototype, Report, Full Testing Plan, Bill of Materials						i I				

Concept Design Phase

Manufacturing/Testing Phase

We are at the <u>transition</u> from concept design to manufacturing and testing. Beginning Week 6 we start procuring parts and building the prototype. Iterative testing will need to be done with sub-assemblies to verify power generation and optimize components like the yaw and blades.

Questions

What resources are available at UCI for wind tunnel testing, or anything similar to that where we can test the prototype with controlled air flow? (Testing plan is one of the project deliverables but being able to do as much testing as possible while building would benefit the design)

Concerns/Expected Challenges

- Will passive yaw alone be enough to spin nacelle of turbine?
 - Selecting optimal geometry of rear fin (iterative design)
 - > Minimizing effects of friction for easier rotation

Thank you!