
Serverless State
What comes next for serverless

Dr. Tim Wagner ServerlessConf NY 2019

You’ll never
change how
people write
applications

“

”

You’d have to
build an

ecosystem

“
”

The whole
cloud would

have to
change

“

”

AWS Lambda
Amazon S3 events
Amazon DynamoDB streams
Amazon Kinesis-to-Lambda
Amazon Aurora Serverless
AWS Event Hub
Amazon Serverless Repository
Amazon API Gateway
AWS Step Functions

Azure Serverless Functions
Azure Serverless Kubernetes
Azure Logic Apps
Azure API Management
Azure Event Grid
Azure Cloud Events
Azure Service Bus

Google Cloud Functions
Google Cloud Run
Firebase

Apache OpenWhisk

We changed how the world writes
software.

So, what’s next?

The Serverless Target

Event handling: Bullseye!

Event handlers
● Sync & async
● Reactive
● Automated

scaling
● Integrated into

vendor stacks
● Way easier than

what came
before

Mobile and web backends: Ok, needs more tooling support

Mobile and Web Apps
● API-driven
● Microservice

architecture
● Automated

scaling
● Easier CRUD
● Legacy migration

(sorta)
● Tools and

frameworks
(some)

● Managed GraphQL
(yay)

Big data / distributed computing: Still academic (pun intended)

Serverless
Supercomputing

● Big data
● Analytics
● Massively

scaled
simulations

● On-the-fly video
transcoding

● Genetic algs
● ML/AI

Adam Selipsky, now CEO of
Tableau:

“So Tim, what kind of
application would Lambda
never be able to handle?”

Conversation at AWS HQ, circa 2013...

Tim Wagner, aspiring AWS
Lambda inventor:

“Video transcoding. It will
never be any good for video
transcoding.”

If the world’s fastest
video transcoder
is serverless...

...what else are we
missing out on???

This research also tells us something important
about platform maturity:

You know a new platform has hit critical
mass when interesting innovation is

happening outside of the vendor.

BUT...the Serverless Supercomputer(™)
is still missing some parts...

The Serverless Supercomputer Stack

The Serverless Supercomputer Stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios

The Serverless Supercomputer Stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios

Applications: Big data, analytics, ML/AI, simulations, r/t video transcoding, ...

The Serverless Supercomputer Stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios

Networking

Applications: Big data, analytics, ML/AI, simulations, r/t video transcoding, ...

Fast, reliable
function-to-function
communication paths

The Serverless Supercomputer Stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios

Networking

Applications: Big data, analytics, ML/AI, simulations, r/t video transcoding, ...

Read and write objects in
single-digit millisecond
latency, at unlimited scaleLow-latency serverless storage

The Serverless Supercomputer Stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios

Networking

Real-time Scheduler Low-latency serverless storage

Applications: Big data, analytics, ML/AI, simulations, r/t video transcoding, ...

Launch millions of
function instances with
proper sequencing

The Serverless Supercomputer Stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios

Networking

Real-time Scheduler Low-latency serverless storage

Applications: Big data, analytics, ML/AI, simulations, r/t video transcoding, ...

Serverless Dataflow Graphs (SDGs) Serverless-optimized
sorting, searching,
grouping algorithms

The Serverless Supercomputer Stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios

Networking

Real-time Scheduler Low-latency serverless storage

Applications: Big data, analytics, ML/AI, simulations, r/t video transcoding, ...

Serverless Dataflow Graphs (SDGs)

Domain-specific
algorithms and
frameworks

Video ML LinPack MonteC
arlo M-R Analytics CRISPR

The Serverless Supercomputer Stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios

Networking

Real-time Scheduler Low-latency serverless storage

Applications: Big data, analytics, ML/AI, simulations, r/t video transcoding, ...

Serverless Dataflow Graphs (SDGs)

Video ML LinPack MonteC
arlo M-R Analytics CRISPR

The ExCamera
stack

The Serverless Supercomputer Stack

Cloud Vendors: Functions, APIs, Managed Service Portfolios

Applications: Big data, analytics, ML/AI, simulations, r/t video transcoding, ...

TODAY:

Strictly DIY - academics and entrepreneurs

“No fly zone” for enterprises

Why this zone is so hard:

It’s stateful and serverless!

But...it’s also the most exciting area of
computer science innovation today!

For its entire history, distributed computing research
modeled capacity as fixed but time as unlimited.

With serverless time is limited, but
capacity is effectively infinite.

This only changes everything :).

Let’s get started!

First up: Serverless Networking

Serverless Networking on AWS:
What works versus what’s needed

Works today

● Lambda invocation through its built-in web
service front end

● Fully managed APIs (CDN, regional, private)
● Event wireup from other managed services
● Call public Internet endpoints
● Call services inside a VPC (if so configured)

Don’t want to duplicate this!

Missing today

● Anonymous pipes (parent-child comm)
● Easily share / create data (no socket.listen)
● Ephemeral service ownership and discovery
● Message-based orchestration (wait for

something to arrive)
● Exchange files or content among Lambda

functions, except by paying for storage in
another AWS service (Amazon S3, etc.)

Let’s build this!

Launching in beta today:

Serverless peer-to-peer
networking for
AWS Lambda

Serverless networking beta release

● Reliable communication between Lambda functions
○ Enables a Lambda to “serve” content to EC2 or other systems
○ Built on top of udt, a reliable high-speed UDP transport protocol
○ Enterprise friendly open source licensing (BSD)
○ Python 3.7 and C++ language bindings available today
○ Distributed as a public Lambda Layer, with sample code in the

Amazon Serverless Application Repository
○ Available in us-east-1 today; more regions coming soon!

● Fully managed NAT lookup service (no need to run a STUN server)
○ Uses Amazon API Gateway serverless websockets
○ Free of charge during beta, modest pay-per-use pricing thereafter

What can you build
with serverless

networking?

 Out of the box you can…

● Reliably send messages, in-memory
buffers, and files between Lambda
functions

● Invoke another Lambda with an anonymous
bidirectional pipe between parent and child

● Use a Lambda function as a simple data
server

...without paying for other AWS services or
API calls to ship your data!

What can you build
with serverless

networking?

 With a little work you can…

● Keep a pool of “warm Lambdas” and fire
them off when you need them

● Use a Lambda instance as a (time
bounded) file or model server

● Send additional arguments or get
intermediate results from a function

● Change the code of a Lambda function on
the fly, without re-invoking it

● Stream content to/from a Lambda in real
time

NAT punching sounds violent…
will the poor NATs be ok?

Never fear, the NATs are safe

λ1 S3
“Get a file”

λ1 S3
“Ok, here it is”

λ1 S3
“Get a file”

NAT

NAT host:NAT port

λ1 S3
“Get a file”

NAT

NAT host:NAT port

λ1 S3NAT

NAT host:NAT port

“Ok, here it is”

λ1 S3NAT

NAT host:NAT port

“Ok, here it is”

A hole punched
out of the NAT

This is client-to-server NAT punching.

It’s transparent and ubiquitous inside of a Lambda
unless you turn on VPC without an IGW/NAT combo.

λ1 S3NAT

NAT host:NAT port

“Ok, here it is”

λ1

Peer-to-peer NAT punching is more complicated...

λ2

λ1

Step 1: The two sides use an intermediary to learn their
“true” source IPs.

λ2

API
Gateway

“Who am I?”

“You’re
172.34.119.443”

NAT NAT

If you’re curious about this ^^^^^^^

API
Gateway

λ1

Step 1: The two sides use an intermediary to learn their
“true” source IPs.
Step 2: Each side sends a message to the other...these
messages bounce, but open the NAT pathways.

λ2
NAT1

NAT2

λ1

Step 1: The two sides use an intermediary to learn their
“true” source IPs.
Step 2: Each side sends a message to the other...these
messages bounce, but open the NAT pathways.
Step 3: Normal communication starts.

λ2NAT1 NAT2

Turns out there are multiple scenarios...

1. Two Lambdas, neither in a VPC
○ Cone NAT - stable address, can choose your port
○ Can use managed exchange service via API Gateway websocket

2. Two Lambdas in the same VPC, with no IGW or managed NAT in their subnet
routes
○ Cone NAT - stable address, can choose your port
○ Requires a privately hosted exchange service

3. One regular Lambda and one in a VPC, with IGW and managed NAT turned on
○ Cone NAT on one side, symmetric NAT on the other
○ Works if the public side does an ephemeral port blast
○ Can use managed exchange service via API Gateway websocket

4. Two Lambdas in different VPCs with IGW and managed NAT in their subnets
○ Two symmetric NATs - address and port are randomly assigned and

depend on the full <source addr, source port, dest addr, dest port> quad
○ Only works if you send and listen on all ephemeral ports
○ Production use of this scenario would likely require NAT configuration

support from AWS
5. Two Lambdas in the same VPC, with IGW and managed NAT in their subnet

routes
○ The presence of the managed NAT routing turns this from scenario 2 into

scenario 4 (no hairpins)

Beta supports scenario 1. Scenarios 2 & 3 have been shown to work.

...and the sad cases:

Performance: Early Observations

Serverless
Supercomputing:

Cloud Vendor
Wishlist

● Scalable bandwidth - should
scale with memory size

● Consistent bandwidth - stable
performance regardless of VPC
settings

● Nicer NATs - simplify hybrid and
enable cross-VPC networking

● Larger memory options

● Future: SDG-aware
preprovisioning

Want to help?
Serverless Networking

● Other language bindings (Java, NodeJS,
Ruby, etc.)

● Higher-level abstractions (asyncio)
● Benchmarking and testing frameworks
● VPC-to-VPC and VPC-to-Public

implementations of NAT punching on AWS
● Porting to other cloud vendors
● Lots more...

Moving up the stack
● High-speed scheduling and job management
● Straggler detection & recovery
● Low-latency storage
● Immutable object management
● Serverless-optimized algorithms (including a

lot of open research questions ideal for grad
students!)

Open source contributors and
innovative developers looking for a
new opportunity

(Links are on the last slide)

Build scalable and stateful services on a serverless foundation!

Too much state:
Servers :)

Limited state:
Serverless event
handling
applications

“Just enough” state: New area of
Serverless systems programming

Serverless State
...the “what comes next” of serverless!

Dr. Tim Wagner ServerlessConf NY 2019

Links
Public Lambda Layer

(us-east-1 only):
arn:aws:lambda:us-east-1:293602984666:layer:Serverle
ssNetworking-Python3:9

Samples on AWS
Serverless App Repo:

https://serverlessrepo.aws.amazon.com/applications/a
rn:aws:serverlessrepo:us-east-1:293602984666:applica
tions~ServerlessNetworkingPython3

Source code: https://github.com/serverlessunicorn/ServerlessNetwo
rkingClients

Docs: https://networkingclients.serverlesstech.net/

Website: https://serverlesstech.net

Tim on twitter & DM: timallwagner@

Tim on Medium: @timawagner

This talk: https://docs.google.com/presentation/d/1g06UmzJXAh_l
7-uohwJyQXG0nS5J93uOpBEKYXANB7o

https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:293602984666:applications~ServerlessNetworkingPython3
https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:293602984666:applications~ServerlessNetworkingPython3
https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:293602984666:applications~ServerlessNetworkingPython3
https://github.com/serverlessunicorn/ServerlessNetworkingClients
https://github.com/serverlessunicorn/ServerlessNetworkingClients
https://github.com/serverlessunicorn/ServerlessNetworkingClients
http://networkingclients.serverlesstech.net/
https://serverlesstech.net
https://docs.google.com/presentation/d/1g06UmzJXAh_l7-uohwJyQXG0nS5J93uOpBEKYXANB7o/edit#slide=id.g647e4cc2ef_0_623
https://docs.google.com/presentation/d/1g06UmzJXAh_l7-uohwJyQXG0nS5J93uOpBEKYXANB7o/edit#slide=id.g647e4cc2ef_0_623

