

Problem Statement

Develop efficient Transformer/MLPs for low-level vision

- low-level vision like denoising, deblurring, dehazing, etc. requires high-resolution image-to-image processing
- Vision Transformers/MLPs are promising on high-level tasks, but it is **non-trivial to adapt** them to low-level (image processing) problems
- The model needs to be 'fully-convolutional', i.e., train on small patches and **inference on full resolution**. Otherwise, the model will cause patch-boundary artifacts [R1]:

[R1] Pre-Trained Image Processing Transformer, CVPR 21, <u>arxiv.org/abs/2012.00364</u>

Our Method: MAXIM Architecture

(b) Encoder / Decoder / Bottleneck

Our proposed MAXIM model is:

- A global **UNet**-like architecture, with multi-stage stacks
- Every block enjoys global-local spatial interaction
- 'Fully-convolutional', i.e., can be trained on small patches and **directly applied on any high resolution** (w/o causing patch-boundary effects)
- scales linearly w.r.t. input image size, unlike other MLP models

MAXIM: Multi-Axis MLP for Image Processing

Zhengzhong Tu¹ Hossein Talebi² Han Zhang² Feng Yang² Peyman Milanfar² Alan Bovik¹ Yinxiao Li² ¹ University of Texas at Austin ² Google Research

Core Module 1: Multi-Axis Gated MLP Nlock

- Contains local branch (2nd Axis) and global branch (1st Axis)
- Apply <u>gMLP</u> on one axis each time in either one branch
- Global and 'fully-convolutional' with linear complexity
- Standalone module that can be plugged-in in many networks

Core Module 2: Cross-Gating MLP Block

 $\hat{\mathbf{X}} = \mathbf{X}_2 \odot \mathrm{G}(\mathbf{Y}_2) , \ \hat{\mathbf{Y}} = \mathbf{Y}_2 \odot \mathrm{G}(\mathbf{X}_2)$

- Can be used as a conditioning layer or fusion module
- linear complexity

Model	Complexity	Fully-conv	Global	
MLP-Mixer [36]	$\mathcal{O}(N^2)$	×	1	
gMLP [19]	$\mathcal{O}(N^2)$	×	1	
Swin-Mixer [22]	$\mathcal{O}(N)$	1	×	
MAXIM (ours)	$\mathcal{O}(N)$	1	1	Mixe

- Same design to core module 1, but extending to interact two features - G(.) function obtains multi-axis gating signals only, and gating is applied reciprocally with two features:

Also global and 'fully-convolutional' with

Numerical results

Figure 1. Our proposed MAXIM model significantly advances state-of-the-art performance on five image processing tasks in terms of PSNR: 1) Denoising (+0.24 dB on SIDD [1]), 2) Deblurring (+0.15 dB on GoPro [57]) 3) Deraining (+0.86 dB on Rain100L [95]), 4) Dehazing (+0.94 dB on RESIDE [43]), and 5) Retouching (Enhancement) (+1.15 dB on FiveK [6]).

Evaluated on **5 low-level** tasks, **SoTA** on **15 out of 20** datasets

State of the Art Deblurring on HIDE (trained on GOPRO)
Ranked #8 Deblurring on GoPro
State of the Art Deblurring on RealBlur-J
Ranked #2 Deblurring on RealBlur-R
Ranked #4 Deblurring on RealBlur-J (trained on GoPro)
Ranked #5 Deblurring on RealBlur-R (trained on GoPro)
Ranked #3 Low-Light Image Enhancement on LOL
State of the Art Photo Retouching on MIT-Adobe 5k
Ranked #2 Single Image Deraining on Rain100H
Ranked #3 Single Image Deraining on Rain100L
Ranked #2 Single Image Deraining on Test100
Ranked #3 Single Image Deraining on Test2800
Imil Ranked #3Single Image Deraining on Test2800Imil Ranked #5Single Image Deraining on Test1200
Image Ranked #3 Single Image Deraining on Test2800 Image Ranked #5 Single Image Deraining on Test1200
Image Ranked #3 Single Image Deraining on Test2800 Image Ranked #5 Single Image Deraining on Test1200 Image Ranked #4 Image Denoising on SIDD

⁽a) MAXIM Backbone