Limits, Continuity and differentiability SEMESTER- I (BMG1CC1A)

 \sum

 \bigcap

 \bigcap

 \circ

 $\overline{\bigcap}$

 \bigcirc

 \bigcirc

 \bigcap

 \bigcap

We take the function is $f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2+y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$

Now we check it's

- \blacksquare Limit
- Continuity
- \blacksquare differentiability

 $\ddot{}$ $^{\circ}$ $\begin{matrix} 0 \\ 0 \end{matrix}$

÷

LIMIT: Let $D \subseteq \mathbb{R}^2$, $f: D \to \mathbb{R}$ be a function and (a, b) be a limit point of D. Let $(x, y) \in D$ and $(x, y) \to (a, b)$ in any manner. f is said to tend to the limit A if to each ε (> 0) there is a δ (> 0) such that

 $|f(x, y) - A| < \varepsilon$ whenever $(x, y) \in N_{\delta}(a, b)$, $a \delta - nbd$ of (a, b) .

We may choose $N_{\delta}(a, b) = \{(x, y)/0 < |x - a| < \delta, 0 < |y - b| < \delta\}$ The $\lim_{(x,y)\to(a,b)} f(x,y) = A$ is called **double limit or simultaneous limit**.

Find the limit of
$$
f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}
$$

\n
$$
\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}} = \left| \frac{xy}{\sqrt{x^2 + y^2}} - 0 \right|
$$
\n
$$
= \frac{|x||y|}{\sqrt{x^2 + y^2}}
$$
\n
$$
\leq \frac{\sqrt{x^2 + y^2} \cdot \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}
$$
\n
$$
= \sqrt{x^2 + y^2} < \varepsilon \text{, if } x^2 + y^2 < \delta^2 (=\varepsilon^2)
$$

iterated or Repeated limit:-

Let N be a certain nbd of (a, b) and $f(x, y)$ be defined on N. For a fixed value of y, $\lim_{x\to a} f(x, y)$, if exists, will involve y .

: $\lim_{x\to a} f(x, y)$ will be different for different values of y and thus $\lim_{x\to a} f(x, y)$ will be a function of y. Let $\lim_{x\to a} f(x, y) = \phi(y)$

If then, $\lim_{y\to b}\phi(y)$ exists and is equal to A, we write

$$
\lim_{y \to b} \left\{ \lim_{x \to a} f(x, y) \right\} = A
$$
 (1)

We change the order of obtaining limit. Keeping x fixed, if $\lim_{y\to b} f(x, y)$ exists it will be a function of x say $\Psi(x)$. If $\lim_{x\to a}\Psi(x)$ exists and is equal to B we write

$$
\lim_{x \to a} \{ \lim_{y \to b} f(x, y) \} = B
$$
 (2)

This limits given in (1) and (2) are called **iterated or repeated limits.**

Here for
$$
f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}
$$

\n
$$
\lim_{y \to 0} \left\{ \lim_{x \to 0} f(x,y) \right\} = \lim_{y \to 0} \left\{ \lim_{x \to 0} \frac{xy}{\sqrt{x^2 + y^2}} \right\} = 0,
$$
\n*similarly*,
$$
\lim_{x \to 0} \left\{ \lim_{y \to 0} f(x,y) \right\} = \lim_{x \to 0} \left\{ \lim_{y \to 0} \frac{xy}{\sqrt{x^2 + y^2}} \right\} = 0
$$

CONTINUITY: -Let D be a non-empty subset of \mathbb{R}^2 and $f: D \to \mathbb{R}$ be a function. Let $(a, b) \in D$. We say that f is continuous at (a, b) if given $\varepsilon > 0$, $\exists \delta > 0$ such that $|f(x, y) - f(a, b)| < \varepsilon \,\forall x \, \mathrm{N}_{\delta}(a, b) \cap D$ In other words, f is continuous at $(a, b) \in D$ if $\lim_{(h,k)\to(0,0)} f(a+h, b+k) = f(a, b)$ where $(a+h, b+k) \in D$. f is called continuous on D if f is cont. at every point of D .

Note: If $\lim_{(x,y)\to(0,0)} f(x, y)$ does not exist, the question of continuity of f at (a, b) does not arise.

Theorem:- If $f(x, y)$ is continuous at (a, b) and $f(a, b) \neq 0$ then there exists a neighbourhood of (a, b) where $f(x, y)$ and $f(a, b)$ maintain the same sign.

Theorem:- If $f(x, y)$ be continuous at (a, b) , then the functions $f(x, b)$ and $f(a, y)$ are continuous at $x = a$ and $y = b$ respectively.

Prove that the function

$$
f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}
$$
 Is continuous at (0,0)

Let $\varepsilon > 0$.

Now
$$
|f(x, y) - f(0,0)| = \left| \frac{xy}{\sqrt{x^2 + y^2}} - 0 \right|
$$

$$
= \left| \frac{xy}{\sqrt{x^2 + y^2}} \right| = \frac{|x||y|}{\sqrt{x^2 + y^2}} \le \frac{\sqrt{x^2 + y^2}\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}
$$

$$
= \sqrt{x^2 + y^2} < \varepsilon
$$

if $x^2 + y^2 < \delta^2$ where $\delta = \varepsilon$

Thus for chosen $\varepsilon > 0$, \exists a positive δ such that $|f(x,y) - f(0,0)| < \varepsilon$ whenever $x^2 + y^2 < \delta^2$ This proves that f is continuous at $(0,0)$.

Let f be a function of two independent variables x and y defined over a domain $D \subset \mathbb{R}^2$ and $P(a, b) \in$ D. Let N be a nbd of (a, b) such that $N \subset D$ and $Q(a + h, b + k) \in N$. If α be the angle that the line joining \overrightarrow{PQ} makes with the positive direction of x-axis, then the direction cosines of \overrightarrow{PQ} are $l = \cos \alpha$ and $m = \sin \alpha$.

It *p* = √*h*² + *k*²
Then *h* = ρcos α, *k* = ρsin α, and ρ → 0 as Q → P.

$$
\lim_{\rho\to 0} \frac{f(a + \rho \cos \alpha, b + \rho \sin \alpha) - f(a, b)}{\rho}
$$
if exists, is called the derivative of *f*(*x*, *y*) at (*a*, *b*) in the direction α and is denoted by D_α*f*(*a*, *b*). If α = 0 the derivative is denoted by $\frac{\partial f(a, b)}{\partial x}$ and if α = $\frac{\pi}{2}$, the derivative is $\frac{\partial f(a, b)}{\partial y}$, and these derivatives are called the **Partial derivatives** of *f*(*x*, *y*) at (*a*, *b*) with respect to *x* and *y* respectively.

Thus,
$$
\lim_{h\to 0} \frac{f(x+h,y)-f(x,y)}{h}
$$
, if exists, is $\frac{\partial f}{\partial x}$ or, f_x and $\lim_{k\to 0} \frac{f(x,y+k)-f(x,y)}{k}$, if exists is $\frac{\partial f}{\partial y}$ or, f_y

a Find the partial derivative of $f(x,y) = \frac{xy}{\sqrt{x^2+y^2}}$ at (0,0)

Here $f(x,y)$ is continuous at $(0,0)$ Now we know that the partial derivative of $f(x,y)$ with respect to x is

$$
f_x \text{ or } \frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}
$$

At (0,0),
$$
f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h}
$$

= $\lim_{h \to 0} \frac{0-0}{h} = 0$

we know that the partial derivative of $f(x, y)$ with respect to y is f_y or $\frac{\partial f}{\partial y} = \lim_{k \to 0} \frac{f(x, y + k) - f(x, y)}{k}$

At (0,0),
$$
f_y(0,0) = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k}
$$

= $\lim_{k \to 0} \frac{0-0}{k} = 0$

Since $f_x(0,0) = f_y(0,0) = 0$ therefore partial derivative exist at (0,0)

DIFFERINTIABILITY OF $(0,0)$ AT

Let $D \subseteq \mathbb{R} \times \mathbb{R}$ be the domian of definition of $f(x, y)$, a function of two independent variables x and y

Let $(x, y) \in D$ be an interior point of D and N be a nbd of (x, y) lying in D. Let again, $(x + h, y + k) \in D$ N.

Then $\Delta f = f(x + h, y + k) - f(x, y)$ is called the increment of $f(x, y)$ at (x, y) Let $\rho = \sqrt{h^2 + k^2}$, is

said to be differentiable at (a, b) if we can express Δf at (a, b) in the form $\Delta f = Ah + Bk + \varepsilon \rho$ where

A and B are independent of h, k and $\varepsilon \to 0$ as $\rho \to 0$ Ah + Bk is called the Total Differential of f at

 (a, b) denoted by df, and $\varepsilon \rho$ is called the error in taking df in place of Δf .

Thus, if a function f is differentiable at any point $(x, y) \in D$

$$
\varepsilon = \frac{\Delta f - df}{\rho}
$$
 should tend to zero as $(h, k) \rightarrow (0, 0)$.

a Check the differentiability of $f(x,y) = \frac{xy}{\sqrt{x^2+y^2}}$ at (0,0)

partial derivatives at (0,0)

$$
\lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = \lim_{h \to 0} \frac{\frac{0}{h} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0.
$$

 \therefore The partial derivative $f_{\mathbf{x}}(0,0)$ exists and is equal to 0.

Similarly,
$$
\lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = 0
$$
. $\therefore f_y(0,0) = 0$.

Supposing that the function is differentiable at $(0,0)$ we can write

 $f(0+h, 0+k) - f(0,0) = hf_x(0,0) + kf_y(0,0) + \varepsilon\sqrt{h^2 + k^2}$

where ε should tend to zero as $(h, k) \rightarrow (0, 0)$.

Now, since $f(0,0) = 0f(h,k) = h.0 + k.0 + \varepsilon \sqrt{h^2 + k^2} \Rightarrow \varepsilon = \frac{1}{h^2 + k^2}$ which does not tend to a unique limit as $(h, k) \to (0, 0).$ In fact, if $(h, k) \to (0, 0)$ along $k = mh$ we see that $\lim_{(h, k) \to (0, 0)} \varepsilon = \lim_{(h, k) \to (0, 0)} \frac{hk}{h^2 + k^2} = \lim_{h \to 0} \frac{mh^2}{h^2(1 + m^2)} =$ $\frac{m}{1+m^2}$, a function of m.

: $\lim_{(h,k)\to(0,0)} \varepsilon$ dose not exist. Hence f(x,y) is not differentiable at (0,0)