

We take the function is
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Now we check it's

- Limit
- Continuity
- differentiability

LIMIT:- Let $D \subseteq \mathbb{R}^2$, $f: D \to \mathbb{R}$ be a function and (a, b) be a limit point of D. Let $(x, y) \in D$ and $(x, y) \to (a, b)$ in any manner. f is said to tend to the limit A if to each $\varepsilon(>0)$ there is a $\delta(>0)$ such that

 $|f(x, y) - A| < \varepsilon$ whenever $(x, y) \in N_{\delta}(a, b)$, $a \delta - nbd$ of (a, b).

We may choose $N_{\delta}(a, b) = \{(x, y)/0 < |x - a| < \delta, 0 < |y - b| < \delta\}$ The $\lim_{(x,y)\to(a,b)} f(x,y) = A$ is called **double limit or simultaneous limit**.

Find the limit of
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}} = \left| \frac{xy}{\sqrt{x^2 + y^2}} - 0 \right|$$

$$= \frac{|x||y|}{\sqrt{x^2 + y^2}}$$

$$\leq \frac{\sqrt{x^2 + y^2} \cdot \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$$

$$= \sqrt{x^2 + y^2} < \varepsilon \text{ ,if } x^2 + y^2 < \delta^2 (= \varepsilon^2)$$

iterated or kepeated iimit:-

Let N be a certain nbd of (a, b) and f(x, y) be defined on N. For a fixed value of y, $\lim_{x\to a} f(x, y)$, if exists, will involve y.

 $\therefore \lim_{x\to a} f(x,y)$ will be different for different values of y and thus $\lim_{x\to a} f(x,y)$ will be a function of y.

Let
$$\lim_{x\to a} f(x,y) = \phi(y)$$

If then, $\lim_{y\to b} \phi(y)$ exists and is equal to A, we write

$$\lim_{y \to b} \left\{ \lim_{x \to a} f(x, y) \right\} = A \qquad (1)$$

We change the order of obtaining limit. Keeping x fixed, if $\lim_{y\to b} f(x,y)$ exists it will be a function of x say $\Psi(x)$. If $\lim_{x\to a} \Psi(x)$ exists and is equal to B we write

$$\lim_{x \to a} \{\lim_{y \to b} f(x, y)\} = B \qquad (2)$$

This limits given in (1) and (2) are called **iterated or repeated limits.**

Here for
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$

$$\lim_{y \to 0} \left\{ \lim_{x \to 0} f(x,y) \right\} = \lim_{y \to 0} \left\{ \lim_{x \to 0} \frac{xy}{\sqrt{x^2 + y^2}} \right\} = 0 ,$$

$$similarly , \qquad \lim_{x \to 0} \left\{ \lim_{y \to 0} f(x,y) \right\} = \lim_{x \to 0} \left\{ \lim_{y \to 0} \frac{xy}{\sqrt{x^2 + y^2}} \right\} = 0$$

f IS CONTINUOUS AT (0,0)

Continuity:-Let D be a non-empty subset of \mathbb{R}^2 and $f: D \to \mathbb{R}$ be a function. Let $(a, b) \in D$. We say that f is continuous at (a, b) if given $\varepsilon > 0$, $\exists \delta > 0$ such that $|f(x, y) - f(a, b)| < \varepsilon \ \forall x \ N_{\delta}(a, b) \cap D$ In other words, f is continuous at $(a, b) \in D$ if $\lim_{(h,k)\to(0,0)} f(a+h,b+k) = f(a,b)$ where $(a+h,b+k) \in D$. f is called continuous on D if f is cont. at every point of D.

Note: If $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist, the question of continuity of f at (a,b) does not arise.

Theorem :- If f(x, y) is continuous at (a, b) and $f(a, b) \neq 0$ then there exists a neighbourhood of (a, b) where f(x, y) and f(a, b) maintain the same sign.

Theorem :- If f(x, y) be continuous at (a, b), then the functions f(x, b) and f(a, y) are continuous at x = a and y = b respectively.

Prove that the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 Is continuous at (0,0)

Let $\varepsilon > 0$.

Now
$$|f(x,y) - f(0,0)| = \left| \frac{xy}{\sqrt{x^2 + y^2}} - 0 \right|$$

$$= \left| \frac{xy}{\sqrt{x^2 + y^2}} \right| = \frac{|x||y|}{\sqrt{x^2 + y^2}} \le \frac{\sqrt{x^2 + y^2} \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$$
$$= \sqrt{x^2 + y^2} < \varepsilon$$

if $x^2 + y^2 < \delta^2$ where $\delta = \varepsilon$

Thus for chosen $\varepsilon > 0$, \exists a positive δ such that

$$|f(x,y) - f(0,0)| < \varepsilon$$
 whenever $x^2 + y^2 < \delta^2$

This proves that f is continuous at (0,0).

PARTAL DIFFERENTABLITY

OF FAT (0,0)

Let f be a function of two independent variables x and y defined over a domain $D \subset \mathbb{R}^2$ and $P(a,b) \in D$. Let N be a nbd of (a,b) such that $N \subset D$ and $Q(a+h,b+k) \in N$. If α be the angle that the line joining \overrightarrow{PQ} makes with the positive direction of x-axis, then the direction cosines of \overrightarrow{PQ} are $l = \cos \alpha$ and $m = \sin \alpha$.

If $p = \sqrt{h^2 + k^2}$

Then $h = \rho \cos \alpha$, $k = \rho \sin \alpha$, and $\rho \to 0$ as $Q \to P$.

 $\lim_{\rho \to 0} \frac{f(a + \rho \cos \alpha, b + \rho \sin \alpha) - f(a, b)}{\rho}$, if exists, is called the derivative of f(x, y) at (a, b) in the direction α

and is denoted by $D_{\alpha}f(a,b)$. If $\alpha=0$ the derivative is denoted by $\frac{\partial f(a,b)}{\partial x}$ and if $\alpha=\frac{\pi}{2}$, the derivative

is $\frac{\partial f(a,b)}{\partial y}$, and these derivatives are called the **Partial derivatives** of f(x,y) at (a,b) with respect to

x and y respectively.

Thus, $\lim_{h\to 0}\frac{f(x+h,y)-f(x,y)}{h}$, if exists, is $\frac{\partial f}{\partial x}$ or, f_x and $\lim_{k\to 0}\frac{f(x,y+k)-f(x,y)}{k}$, if exists is $\frac{\partial f}{\partial y}$ or, f_{y^*}

☐ Find the partial derivative of $f(x,y) = \frac{xy}{\sqrt{x^2+y^2}}$ at (0,0)

Here f(x,y) is continuous at (0,0)

Now we know that the partial derivative of f(x,y) with respect to x is

$$f_x$$
 or $\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$

At (0,0),
$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0)-f(0,0)}{h}$$

= $\lim_{h \to 0} \frac{0-0}{h} = 0$

we know that the partial derivative of f(x, y) with respect to y is

$$f_y$$
 or $\frac{\partial f}{\partial y} = \lim_{k \to 0} \frac{f(x, y + k) - f(x, y)}{k}$

At (0,0),
$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k}$$

= $\lim_{k \to 0} \frac{0 - 0}{k} = 0$

Since $f_x(0,0) = f_y(0,0) = 0$ therefore partial derivative exist at (0,0)

DIFFERENTIABILITY OF FAT (0,0)

Let $D \subseteq \mathbb{R} \times \mathbb{R}$ be the domian of definition of f(x, y), a function of two independent variables x and y. Let $(x, y) \in D$ be an interior point of D and N be a nbd of (x, y) lying in D.Let again, $(x + h, y + k) \in N$.

Then $\Delta f = f(x+h,y+k) - f(x,y)$ is called the increment of f(x,y) at (x,y) Let $\rho = \sqrt{h^2 + k^2}$, f is said to be differentiable at (a,b) if we can express Δf at (a,b) in the form $\Delta f = Ah + Bk + \varepsilon \rho$ where A and B are independent of h, k and $\varepsilon \to 0$ as $\rho \to 0$ Ah + Bk is called the Total Differential of f at (a,b) denoted by df, and $\varepsilon \rho$ is called the error in taking df in place of Δf .

Thus, if a function f is differentiable at any point $(x, y) \in D$ $\varepsilon = \frac{\Delta f - df}{\rho} \text{ should tend to zero as } (h, k) \to (0,0).$

 \Box Check the differentiability of $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ at (0,0)

partial derivatives at (0,0)

$$\lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{0}{h} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0.$$

 \therefore The partial derivative $f_{x}(0,0)$ exists and is equal to 0.

Similarly,
$$\lim_{k\to 0} \frac{f(0,k)-f(0,0)}{k} = 0$$
. $f_y(0,0) = 0$.

Supposing that the function is differentiable at (0,0) we can write

$$f(0+h,0+k) - f(0,0) = hf_x(0,0) + kf_y(0,0) + \varepsilon\sqrt{h^2 + k^2}$$

where ε should tend to zero as $(h, k) \to (0,0)$.

Now, since f(0,0) = 0 f(h,k) = h. 0 + k. $0 + \varepsilon \sqrt{h^2 + k^2} \Rightarrow \varepsilon = \frac{1}{h^2 + k^2}$ which does not tend to a unique limit as $(h,k) \to (0,0)$.

In fact, if $(h, k) \to (0,0)$ along k = mh we see that $\lim_{(h,k)\to(0,0)} \varepsilon = \lim_{(h,k)\to(0,0)} \frac{hk}{h^2+k^2} = \lim_{h\to 0} \frac{mh^2}{h^2(1+m^2)} = \frac{m}{1+m^2}$, a function of m.

 $\therefore \lim_{(h,k)\to(0,0)} \varepsilon$ dose not exist . Hence f(x,y) is not differentiable at (0,0)