
Full Chunk-based Computing

Presented by Chi Zhang (@skyzh)

https://github.com/skyzh


Contents

● Motivation

● Developer Interface Changes

● Internal Changes

● Benchmark

● Future works



What is Chunk-based Computing

● Using TiDB Chunk format during computation in coprocessor framework

● Previously: Vec<Option<T>>



● Many SQL functions handle “NULL” in the same way

● Memory allocation overhead of “Bytes” and “Json”

● Overhead in decoding and encoding data of TiDB

● Solution: use TiDB Chunk format in TiKV coprocessor framework

Motivation



Changes in Developer Interface

For primitive types (Int, Decimal, etc.)

● add “nullable” to “rpn_fn” macro attributes

● “&Option<T>” to “Option<&T>”



Changes in Developer Interface

For “Bytes” and “Json”

● add “nullable” to “rpn_fn” macro attributes

● “&Option<Bytes>” to “Option<BytesRef>”

● “&Option<Json>” to “Option<JsonRef>”



Changes in Developer Interface

For functions that return “NULL” if any of the argument is “NULL”

● no attributes for “rpn_fn” macro

● remove “Option” in parameters



Changes in Developer Interface

For functions that may return large amounts of data

● Use writer-guard pattern to avoid allocation

● partial writer: begin ➡ partial_write ➡ finish



Changes in Developer Interface

For functions that may return large amounts of data

● Use writer-guard pattern to avoid allocation

● direct write: write(Some(Bytes)), write_ref(Some(BytesRef)), write(None)



Changes in Developer Interface

● using writer + Bytes / Json is recommended

● using “rpn_fn” without “nullable” is recommended



Internal Changes

● “Vec<Option<T>>” to “ChunkedVecSized<T>”

○ append-only

○ can only get reference to an element (&T)

○ use “bitmap” to represent if cell is null or not

○ more compact layout

Some(128) Some(64) None

Vec<Option<Int>>

(16 * 3 = 48 bytes)

128 64 0

(8 * 3 + 1 = 25 bytes)

ChunkedVecSized<T>

11000000bitmap (BitVec)

lowest - highest bit



Internal Changes

● “Vec<Option<Bytes>>” to “ChunkedVecBytes”, “Vec<Option<Json>>” to “ChunkedVecJson” 

○ append-only

○ can only get “BytesRef” or “JsonRef”

○ data are stored adjacently in memory

abcd

efgh

ijkl

Vec<Option<Bytes>>

abcdefghijkl

ChunkedVecBytes

ptr ptr NULL ptr

(Somewhere in memory)

offsets 0 4 8 8 12

11010000bitmap (BitVec)

lowest - highest bit



Internal Changes

● “NULL”s are merged before evaluating for functions without “nullable”

○ Previously: “add” receives Option<Int> and handles NULL inside RPN function

add(a: &Int, b: &Int)
11100111bitmap of A

11011111bitmap of B

bitwise and

11000111

merged bitmap evaluate



Micro Benchmarks

● Significant improvement in processing Bytes data



Future works

● Speedup encode and decode speed

○ efficiently tell if “logical_rows” are identical

○ construct “ChunkedVec” directly from TiDB Chunk format

○ construct TiDB Chunk “Column” directly from “ChunkedVec”

● Support “nullable” and NULL merging in variable argument RPN function #[rpn_fn(vargs)]

● Refactor existing vectorized functions to use new interface



Thank You !


