
CS61B Fall 2024

Introduction to Java
Discussion 01

CS61B Fall 2024

Announcements

● Welcome to CS 61B!
● Please read our Ed guidelines

before you post to make sure
everything follows the rules

● Pre-Semester Survey: due Friday
9/6 at 11:59 PM PT

● Week 2 Survey: due Wednesday
September 4 at 11:59 PM PT

● Homework 0B: Tuesday, September
3 at 11:59 PM

● Homework 1: due Friday,
September 6 at 11:59 PM

● Project 0: due Friday, September
6th at 11:59PM

CS61B Fall 2024

Meet Your TA!
Add an introduction here. Make sure to make your own copy of the slides before editing, and change the
location to your own Drive (not our shared 61B one).

Some things you can include:

- Your name
- Your pronouns
- Your email address
- Your major and year
- Maybe your hobbies, interests, favorites, etc so students can relate to you as a human being
- Maybe a fun picture of you that shows your ✨sparkle ✨

CS61B Fall 2024

Content Review

CS61B Fall 2024

Quick Java Basics
public class Hello {

public static void main(String[] args) {

System.out.println(“Hello world!”);

}

}

● In Java, pretty much everything is defined in a class

● Type declarations: Java is statically typed, so we have to tell the computer what type of
value every variable holds and what every function returns (ie. int, void)

● Don’t forget the brackets and semicolons!

CS61B Fall 2024

Structure of a Class
public class CS61BStudent { // Class Declaration

public int idNumber; // Instance Variables

public int grade;
public static String instructor = “Hug”; // Class (Static) Variables

public CS61BStudent (int id) { // Constructor

this.idNumber = id; // this refers to the instance of the CS61BStudent we are in

this.grade = 100;
}

public boolean watchLecture() { // Instance Method

...
}
public static String getInstructor() { // Class (Static) Method

...
}

}

CS61B Fall 2024

Instantiating Classes
public class CS61BLauncher {

public static void main(String[] args) {
CS61BStudent studentOne; // Declare a new variable of class CS61BStudent
studentOne = new CS61BStudent(32259); // Instantiate and assign to our new instance

CS61BStudent studentTwo = new CS61BStudent(19234); // Both at once

studentOne.watchLecture(); // Instance methods are called on instance

CS61BStudent.getInstructor(); // Static methods can be called on the class OR the

instance

CS61BStudent.watchLecture();

studentOne.getInstructor();

}
}

CS61B Fall 2024

Instantiating Classes
public class CS61BLauncher {

public static void main(String[] args) {
CS61BStudent studentOne; // Declare a new variable of class CS61BStudent

}
}

CS61B Fall 2024

Instantiating Classes
public class CS61BLauncher {

public static void main(String[] args) {
CS61BStudent studentOne; // Declare a new variable of class CS61BStudent
studentOne = new CS61BStudent(32259); // Instantiate and assign to our new instance

}
}

CS61B Fall 2024

Instantiating Classes
public class CS61BLauncher {

public static void main(String[] args) {
CS61BStudent studentOne; // Declare a new variable of class CS61BStudent
studentOne = new CS61BStudent(32259); // Instantiate and assign to our new instance

CS61BStudent studentTwo = new CS61BStudent(19234); // Both at once

}
}

CS61B Fall 2024

Instantiating Classes
public class CS61BLauncher {

public static void main(String[] args) {
CS61BStudent studentOne; // Declare a new variable of class CS61BStudent
studentOne = new CS61BStudent(32259); // Instantiate and assign to our new instance

CS61BStudent studentTwo = new CS61BStudent(19234); // Both at once

studentOne.watchLecture(); // Instance methods are called on instance

CS61BStudent.getInstructor(); // Static methods can be called on the class OR the

instance

}
}

CS61B Fall 2024

Instantiating Classes
public class CS61BLauncher {

public static void main(String[] args) {
CS61BStudent studentOne; // Declare a new variable of class CS61BStudent
studentOne = new CS61BStudent(32259); // Instantiate and assign to our new instance

CS61BStudent studentTwo = new CS61BStudent(19234); // Both at once

studentOne.watchLecture(); // Instance methods are called on instance

CS61BStudent.getInstructor(); // Static methods can be called on the class OR the

instance

CS61BStudent.watchLecture(); // Does this work?

}
}

CS61B Fall 2024

Instantiating Classes
public class CS61BLauncher {

public static void main(String[] args) {
CS61BStudent studentOne; // Declare a new variable of class CS61BStudent
studentOne = new CS61BStudent(32259); // Instantiate and assign to our new instance

CS61BStudent studentTwo = new CS61BStudent(19234); // Both at once

studentOne.watchLecture(); // Instance methods are called on instance

CS61BStudent.getInstructor(); // Static methods can be called on the class OR the

instance

CS61BStudent.watchLecture(); // Fails. Which student is watching lecture?

}
}

CS61B Fall 2024

Instantiating Classes
public class CS61BLauncher {

public static void main(String[] args) {
CS61BStudent studentOne; // Declare a new variable of class CS61BStudent
studentOne = new CS61BStudent(32259); // Instantiate and assign to our new instance

CS61BStudent studentTwo = new CS61BStudent(19234); // Both at once

studentOne.watchLecture(); // Instance methods are called on instance

CS61BStudent.getInstructor(); // Static methods can be called on the class OR the

instance

CS61BStudent.watchLecture(); // Fails. Which student is watching lecture?

studentOne.getInstructor(); // Does this work?

}
}

CS61B Fall 2024

Instantiating Classes
public class CS61BLauncher {

public static void main(String[] args) {
CS61BStudent studentOne; // Declare a new variable of class CS61BStudent
studentOne = new CS61BStudent(32259); // Instantiate and assign to our new instance

CS61BStudent studentTwo = new CS61BStudent(19234); // Both at once

studentOne.watchLecture(); // Instance methods are called on instance

CS61BStudent.getInstructor(); // Static methods can be called on the class OR the

instance

CS61BStudent.watchLecture(); // Fails. Which student is watching lecture?

studentOne.getInstructor(); // Works, though is seen as bad practice.

}
}

CS61B Fall 2024

Overview: Static vs. Instance
Static variables and functions belong to the whole class.
Example: Every 61B Student shares the same instructor, and if the instructor were to change it would
change for everyone.

Instance variables and functions belong to each individual instance.
Example: Each 61B Student has their own ID number, and changing a student’s ID number doesn’t
change anything for any other student.

Check for understanding: can you reference instance variables in static methods? Can you
reference static variables in instance methods?

*Don’t worry if you don’t fully understand the difference right now! We’ll talk more about this in
future discussions

CS61B Fall 2024

Worksheet

CS61B Fall 2024

1A Welcome to CS 61B
public class CS61B {

// variables here

...

}

Define the following variables within the class:
1. university: the name of the

university, which should be ”UC
Berkeley” for all semesters of CS61B

2. semester: the semester that the course
is being taught

3. students: all the CS61BStudents in
this semester’s CS61B. Remember that
the course has a fixed capacity!

CS61B Fall 2024

1A Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;

}

Note that university is static!
- All CS61B students attend

UC Berkeley

1. university: the name of the
university, which should be ”UC
Berkeley” for all semesters of CS61B

CS61B Fall 2024

1A Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;

}

1. university: the name of the
university, which should be ”UC
Berkeley” for all semesters of CS61B

2. semester: the semester that the course
is being taught

CS61B Fall 2024

1A Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;
public CS61BStudent[] students;

}

1. university: the name of the
university, which should be ”UC
Berkeley” for all semesters of CS61B

2. semester: the semester that the course
is being taught

3. students: all the CS61BStudents in
this semester’s CS61B. Remember that
the course has a fixed capacity!

CS61B Fall 2024

1A Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;
public CS61BStudent[] students;

}

Notice that we can’t initialize
semester or students yet: we
don’t know what the semester or
capacity of the class are!

1. university: the name of the
university, which should be ”UC
Berkeley” for all semesters of CS61B

2. semester: the semester that the course
is being taught

3. students: all the CS61BStudents in
this semester’s CS61B. Remember that
the course has a fixed capacity!

CS61B Fall 2024

1B Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;
public CS61BStudent[] students;

// constructor here

}

Each CS61B instance represents one
semester of the course.

Define a skeleton for the constructor that
takes in:
1. a capacity for the maximum

number of students
2. an array of signups, students who

have signed up to take the course
3. .

CS61B Fall 2024

1B Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;
public CS61BStudent[] students;

public CS61B(int capacity, CS61BStudent[] signups, String semester) {

}

}

Define a skeleton for the constructor that
takes in:
1. a capacity for the maximum

number of students
2. an array of signups, students who

have signed up to take the course
3. the semester (ie. ”Spring 2024”)

CS61B Fall 2024

1B Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;
public CS61BStudent[] students;

public CS61B(int capacity, CS61BStudent[] signups, String semester) {
this.semester = semester;

}

}

Define a skeleton for the constructor that
takes in:
1. a capacity for the maximum

number of students
2. an array of signups, students who

have signed up to take the course
3. the semester (ie. ”Spring 2024”)

CS61B Fall 2024

1B Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;
public CS61BStudent[] students;

public CS61B(int capacity, CS61BStudent[] signups, String semester) {
this.semester = semester;
this.students = new CS61BStudent[capacity];

}

}

Define a skeleton for the constructor that
takes in:
1. a capacity for the maximum

number of students
2. an array of signups, students who

have signed up to take the course
3. the semester (ie. ”Spring 2024”).

CS61B Fall 2024

1B Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;
public CS61BStudent[] students;

public CS61B(int capacity, CS61BStudent[] signups, String semester) {
this.semester = semester;
this.students = new CS61BStudent[capacity];
for (int i = 0; i < capacity; i++) {

}
}

}

Define a skeleton for the constructor that
takes in:
1. a capacity for the maximum

number of students
2. an array of signups, students who

have signed up to take the course
3. the semester (ie. ”Spring 2024”).

CS61B Fall 2024

1B Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;
public CS61BStudent[] students;

public CS61B(int capacity, CS61BStudent[] signups, String semester) {
this.semester = semester;
this.students = new CS61BStudent[capacity];
for (int i = 0; i < capacity; i++) {

this.students[i] = signups[i];
}

}

}

Define a skeleton for the constructor that
takes in:
1. a capacity for the maximum

number of students
2. an array of signups, students who

have signed up to take the course
3. the semester (ie. ”Spring 2024”).

CS61B Fall 2024

1C Welcome to CS 61B
public class CS61B {

public static String university = “UC Berkeley”;
public String semester;
public CS61BStudent[] students;

// constructor
...

// methods here

}

Add the following methods to the class:
1. makeStudentsWatchLecture:

makes every enrolled
CS61BStudent in this semester of
the course watch lecture

2. changeUniversity: takes in a new
university name newUniversity.
Changes the university for all
semesters of CS61B to
newUniversity

CS61B Fall 2024

1C Welcome to CS 61B
public class CS61B {

// variables and constructor
...

public int makeStudentsWatchLecture() {

 }

}

}

Add the following methods to the class:
1. makeStudentsWatchLecture:

makes every enrolled
CS61BStudent in this semester of
the course watch lecture. Returns
how many who actually watched.

CS61B Fall 2024

1C Welcome to CS 61B
public class CS61B {

// variables and constructor
...

public int makeStudentsWatchLecture() {
int total = 0;

 }

}

}

Add the following methods to the class:
1. makeStudentsWatchLecture:

makes every enrolled
CS61BStudent in this semester of
the course watch lecture. Returns
how many who actually watched.

CS61B Fall 2024

1C Welcome to CS 61B
public class CS61B {

// variables and constructor
...

public int makeStudentsWatchLecture() {
int total = 0;
for (CS61BStudent student : students) {

 }

 }

}

}

Add the following methods to the class:
1. makeStudentsWatchLecture:

makes every enrolled
CS61BStudent in this semester of
the course watch lecture. Returns
how many who actually watched.

CS61B Fall 2024

1C Welcome to CS 61B
public class CS61B {

// variables and constructor
...

public int makeStudentsWatchLecture() {
int total = 0;
for (CS61BStudent student : students) {

 boolean watched = student.watchLecture();
if (watched) {

total += 1;
}

 }
 }

}

}

Add the following methods to the class:
1. makeStudentsWatchLecture:

makes every enrolled
CS61BStudent in this semester of
the course watch lecture. Returns
how many who actually watched.

CS61B Fall 2024

1C Welcome to CS 61B
public class CS61B {

// variables and constructor
...

public int makeStudentsWatchLecture() {
int total = 0;
for (CS61BStudent student : students) {

 boolean watched = student.watchLecture();
if (watched) {

total += 1;
}

 }
return total;

 }

}

}

Add the following methods to the class:
1. makeStudentsWatchLecture:

makes every enrolled
CS61BStudent in this semester of
the course watch lecture. Returns
how many who actually watched.

CS61B Fall 2024

1C Welcome to CS 61B
public class CS61B {

// variables and constructor
...

 public static void changeUniversity(String newUniversity) {

 }
}

Add the following methods to the class:
1. makeStudentsWatchLecture:

makes every enrolled
CS61BStudent in this semester of
the course watch lecture

2. changeUniversity: takes in a new
university name newUniversity.
Changes the university for all
semesters of CS61B to
newUniversity

CS61B Fall 2024

1C Welcome to CS 61B
public class CS61B {

// variables and constructor
...

 public static void changeUniversity(String newUniversity) {
 university = newUniversity;
 }
}

Add the following methods to the class:
1. makeStudentsWatchLecture:

makes every enrolled
CS61BStudent in this semester of
the course watch lecture

2. changeUniversity: takes in a new
university name newUniversity.
Changes the university for all
semesters of CS61B to
newUniversity

CS61B Fall 2024

1D Welcome to CS 61B

Modify your existing implementation to support course expansions. Whenever the course expands,
students that were originally waitlisted should be enrolled, up until the new capacity. Assume that the
new capacity is always less than or equal to the number of students signed up.

CS61B Fall 2024

1D Welcome to CS 61B

Modify your existing implementation to support course expansions. Whenever the course expands,
students that were originally waitlisted should be enrolled, up until the new capacity. Assume that
the new capacity is always less than or equal to the number of students signed up.

Recall that arrays have fixed capacity, so we can’t simply append to the end of the array.

We can add an additional instance variable to keep track of all students currently signed up for the
course, in addition to those enrolled. When the course expands, we can create a new array for the
currently enrolled students and the newly enrolled students, similarly to the constructor, and
reassign students to this array.

Challenge solution: Only keep track of signups. Add an additional instance variable for the
capacity of the course. The students of signups below index capacity are enrolled, and the
ones behind are waitlisted. When expanding the course, we only need to change capacity.

