Root Finding
1-D Root Finding
f(x+) > 0
f(x–) < 0
1-D Root Finding
What Goes Wrong?
Tangent point:
very difficult�to find
Singularity:
brackets don’t�surround root
Pathological case:
infinite number of�roots – e.g. sin(1/x)
Example: Press et al., Numerical Recipes in C�Equation (3.0.1), p. 105
2
2 ln((Pi - x) )
f := x -> 3 x + ------------- + 1
4
Pi
> evalf(f(Pi-1e-10));
30.1360472472915692...
> evalf(f(Pi-1e-100));
25.8811536623525653...
> evalf(f(Pi-1e-600));
2.24285595777501258...
> evalf(f(Pi-1e-700));
-2.4848035831404979...
> evalf(f(Pi+1e-700));
-2.4848035831404979...
> evalf(f(Pi+1e-600));
2.24285595777501258...
> evalf(f(Pi+1e-100));
25.8811536623525653...
> evalf(f(Pi+1e-10));
30.1360472510614803...
Bisection Method
Bisection
Faster Root-Finding
Secant Method
1
2
3
4
Secant Method
False Position Method
1
2
3
4
Other Interpolation Strategies
Newton-Raphson
1
2
3
4
Slope = derivative at 1
Newton-Raphson
Newton-Raphson
Newton-Raphson Convergence
Popular Example of Newton: Square Root
Reciprocal via Newton
Rootfinding in >1D
Rootfinding in >1D
Newton in Higher Dimensions
Newton in Higher Dimensions
Newton in Higher Dimensions