Week 4 Section Sampling and Parallel Imaging

Parallel Imaging

Nyquist Review

 FOV_x δ_x

Same Holds for Y-direction

2DFT

Frequency (Hz)

What determines the object bandwidth?

Frequency (Hz)

What is the *sampling* bandwidth?

Frequency (Hz) How is Δ_{k_x} related to the sampling bandwidth/rate? Hint: $k_x(t) = \frac{\gamma}{2\pi} \int_0^t G_x(\tau) d\tau$

 $\Delta_{k_x} \leq \frac{1}{\text{FOV}_x} \implies \text{BW}_{\text{samp}} \geq \text{BW}_{\text{object}}$

Frequency (Hz)

What happens if $BW_{samp} \le BW_{object}$?

a.) Aliasing along x b.) image cut off along x c.) nothing

Frequency (Hz)

What happens if $BW_{samp} \le BW_{object}$?

a.) Aliasing along x b.) image cut off along x c.) nothing

Parallel Imaging

Readout Sampling Example: Spiral

 $\begin{array}{ll} \mbox{When designing complicated trajectories, need to} \\ \mbox{make sure that} & \Delta_k \leq \frac{1}{\mbox{FOV}_{radial}} & \mbox{is satisfied everywhere} \end{array}$

Parallel Imaging

FOV and Resolution Model

$$\hat{M}(k_x, k_y) = \frac{1}{\Delta_{k_x} \Delta_{k_y}} \coprod^2 (\frac{k_x}{\Delta_{k_x}}, \frac{k_y}{\Delta_{k_y}}) \quad \Box^2 (\frac{k_x}{W_x}, \frac{k_y}{W_y}) \qquad M(k_x, k_y)$$

Parallel Imaging

FOV and Resolution Model

$$\hat{M}(k_x,k_y) = \frac{1}{\Delta_{k_x}\Delta_{k_y}} \prod^2 (\frac{k_x}{\Delta_{k_x}},\frac{k_y}{\Delta_{k_y}}) \quad \sqcap^2 (\frac{k_x}{W_x},\frac{k_y}{W_y}) \qquad M(k_x,k_y)$$
FT

$$\hat{m}(x,y) = \coprod (\Delta_{k_x} x, \Delta_{k_y} y) * * W_{k_x} W_{k_y} \operatorname{sinc}(W_x x) \operatorname{sinc}(W_y y) * * m(x,y)$$

Parallel Imaging

FOV and Resolution Model

Parallel Imaging

FOV and Resolution Model: Increasing $\Delta_{k_{T}}$

only if x is readout direction

 $\hat{m}(x,y) = \coprod (\Delta_{k_x} x, \Delta_{k_y} y) * * W_{k_x} W_{k_y} \operatorname{sinc}(W_x x) \operatorname{sinc}(W_y y) * * m(x,y)$

FOV and Resolution Model: Increasing $\Delta_{k_{\mathcal{U}}}$

only if y is phase encode direction

$\hat{m}(x,y) =$

 $\hat{m}(x,y) = \coprod (\Delta_{k_x} x, \Delta_{k_y} y) * * W_{k_x} W_{k_y} \operatorname{sinc}(W_x x) \operatorname{sinc}(W_y y) * * m(x,y)$

Parallel Imaging

Parallel Imaging

Multi-Coil Receive

- MRIs have multiple coils at different positions around the subject
- These coils will see slightly different images due to proximity from the signal source (subject)
- The signal recorded from coil c is:

$$s_c(t) = M_c(k_x(t), k_y(t))$$
$$M_c(k_x, k_y) = \mathcal{F}\{w_c(x, y)m(x, y)\}$$

- Where $w_c(x,y)$ is the coil's weighting function (sensitivity map)

Parallel Imaging

Multi-Coil Receive

Each coil reads unique data, but same trajectory

Multi-Coil Receive: Linear Inverse Model

We won't be covering this in much detail, check out EE369C for more!