Astro AI with Fugaku
@ University of Tsukuba, Tokyo Campus
11-12 Sep. 2023
Keyword is AI!
Day 1 (11 Sep.)
10:30 - 12:00 Keynote talks (30 min incl. Q&A)
Yusuke Iida
Jingjing Shi
12:00 - 13:30 Lunch break
13:30 - 13:50 Self introduction (~1 min per person)
13:50 - (17:00) Hack
Day 2 (12 Sep.)
10:00 - 12:00 Research talks (15 min incl. Q&A)
Hiroyuki Masaki
Yuta Asahina
Akira Harada
Keiya Hirashima
Kana Moriwaki
Akira Tokiwa
Armijo Joaquin
Hideki Tanimura
12:00 - 16:00 Free lunch + Hack
Feel free to ask questions anytime!
Self Introduction
1 min per person
Please put your name, affiliation, and photo.
Kana Moriwaki
Yusuke Iida
Akira Harada
Hideyuki Hotta
Keiya Hirashima
Hanchun Jiang
Yuki Kambara
Akira Tokiwa
Ken OHSUGA
Simulation results:
[left] Black hole accretion disks and jets
[right] Photon ring
Akihiro Inoue
Simulation results (right panel) :
accretion flows around the magnetized neutron star
Jingjing Shi
- Large-scale structure cosmology: galaxy clustering, intrinsic alignment, weak lensing
- Galaxy formation and evolution: analysis using cosmological hydro-dynamical simulations
Joaquin Armijo
Denoiser weak lensing (convergence) map
Tian Qiu
Jia Liu �https://liuxx479.github.io/, jia.liu@ipmu.jp�Director, Center for Data-Driven Discovery, Kavli IPMU
Associate Professor, Kavli IPMU
Data Neutrinos Large-Scale Structure CMB (Black Holes) Simulations Machine Learning Data
LSST
HSC & PFS
Simons Obs.
LiteBIRD
Fugaku Projects Overview
Ken Ohsuga
Hideyuki Hotta
Jia Liu
シミュレーションとAIで解き明かす�太陽地球環境変動�Elucidation of the Sun-Earth environment using simulations and AI
領域:④ 基礎科学の発展(②防災・減災、環境問題) �4. Basic Science (2. Disaster prevention and mitigation, Environment)
課題の種類:(c) 標準課題(計算資源のみ)/Numerical resource only
「富岳」成果創出加速プログラム
Program for Promoting Researchers on the Supercomputer Fugaku
課題代表者:堀田 英之
PI: Hideyuki HOTTA
代 表 機 関:名古屋大学宇宙地球環境研究所
Research Institute: Nagoya University/ISEE
30
Comprehensive project covering solar interior, surface, corona, interplanetary and geo-magnetosphere
Solar dynamo
Collaboration with Observation
Solar wind
Flare
Coronal heating
Coronal mass ejection
Geo-magnetosphere
Accelerate calc. and collaboration with obs.
Simulation acceleration by AI
Sophisticated collaboration with observation
AIを用いたシミュレーションの抜本的な改革・観測連携の洗練化
Turbulent hierarchy
Difficult to cover in one simulation
Solar atmosphere sim.
RAMENS(Iijima+2017)
Synthesis Obs.
Actual Obs.
Hinode, SOLAR-C、DKIST、Geo-X
Simulation acceleration
Collaboration with Obs.
32
Sub-A
From dynamo in solar interior�to sunspot formation.
太陽内部の乱流磁場生成から�黒点形成までの統一的理解
Sub-B
Solar surface, corona, wind, �and interplanetary space modeling
太陽表面・コロナ・太陽風・惑星間空間�の包括的モデリング
Sub-C�Geo-space modulation by �magnetosphere modeling
超高解像度地球磁気圏モデルによる�ジオスペース変動の解明
Hotta & Toriumi, 2020
Sunspot simulation
R2D2 code
Iijima+2023
Solar surface → solar wind at Fugaku
Shiota+2016
Coronal mass�ejection (CME)
RAMENS、SUSANOO codes
Matsumoto+2022
Global modeling of �geo-space
Geo-X synthesis
CANS+、Vlasov2D3V codes
Only R2D2 can deal with �deep CZ to surface in the world
Only RAMES can deal with surface�to solar wind in the world
Hotta & Kusano, 2021
Nature Astronomy
33
Project members
8 institute/univ., 24 members
Hideyuki Hotta (Nagoya-U)
Haruhisa Iijima (Nagoya-U)
Yosuke Matsumoto (Chiba-U)
Yusuke Iida (Niigata-U)
次世代宇宙論サーベイ群のための�多波長宇宙論的シミュレーション
応募する領域:④基礎科学の発展、新領域
応募する課題の種類:(b) 標準課題
「富岳」成果創出加速プログラム
課題代表者:LIU Jia
代 表 機 関:国立大学法人 東京大学
Multi-wavelength Cosmological Simulations for Next-generation Surveys on Fugaku
PI: Jia LIU (CD3, Kavli IPMU)
With contribution from Ken Osato & Hironao Miyatake (Co-PIs)
「富岳」成果創出加速プログラム
Overview of the Project
Optical-NIR surveys
CMB surveys
2020
2025
2030
CMB-S4
LiteBIRD
Project
Period
DESI
ACT
PFS
HSC
LSST
Euclid
Roman
Simons Observatory
Multi-wavelength data from
ongoing/upcoming surveys
N-body�Simulations
(1600 runs)
Galaxies
tSZ/kSZ
Lensing
Simulations & Mocks
AI/ML
Emulator
Simulation-�Based
Inference
Fugaku
New Physics
Overview of the Project
Our Team
PI: Jia Liu
(IPMU)
Co-PI:Ken Osato
(Chiba Univ.)
Co-PI:Hironao Miyatake
(Nagoya Univ.)
Masato Shirasaki
(NAOJ)
Takahiro Nishimichi
(Kyoto Sangyo Univ.)
Satoshi Tanaka
(Kyoto Univ.)
Shogo Ishikawa
(Kyoto Univ.)
Tomotake Matsumura
(IPMU)
Masahiro Takada
(IPMU)
Yici Zhong
(U. Tokyo)
Seongwhan Yoon
(Nagoya Univ.)
Akira Tokiwa
(IPMU)
2022: Machine Learning in Astrophysics
Workshop at KMI, Nagoya University, Nov 21-22, 2022
CENTER FOR DATA-DRIVEN DISCOVERY (CD3)
Welcome to collaborate with CD3 researchers every Friday 13:30-17:00 (“Hack Friday”)
Mission: advancing our understanding of the universe through data science and AI/ML
Website: cd3.ipmu.jp
Opening Symposium: April 20, 2023
Location: Kavli IPMU, U Tokyo (Kashiwa, Chiba)
Stay tuned: (Jan 2024) joint CD3 x CCA workshop in Kavli IPMU on ML x astro
Collaborative Hack
Daily progress report
~ 5 min per group
Add a channel
→ Channel list
# workshop_fugakuai_sep23
Please join the slack channel for Hack
Useful materials
Groups
Group 1 (Hotta, Iida, Tanimura, Kanbara) Predict n+1 step data from n step data.
Group 2 (Harada, Moriwaki, Tokiwa, Inoue) Physics Informed generative AI
Group 3 (Tian, Jingjing, Joaquin, Keiya) Normalizing flow for different geometries
Group 4 (Jia Liu, Hanchun Jiang, Ken Ohsuga, Hiroyuki Masaki, Yuta Asahina): Investigate the feasibility of applying transformer on CMB polarization data
Group 1 (Kambara, Iida, Tanimura, Hotta) Predict n+1 step data from n step data.
We made the simplest CNN model. It predicts intensity 10 steps later from data of intensity and vertical velosity.
n_param =2, epoch =100
day 2
Tried to use multiple images to predict next image.
-> Memory limit of Google Colaboratory exceed
We use 3 steps to predict 10 steps later, little improvement was seen.
2 layer CNN single layer
From density to magnetic field with transformer
Results….
CNN
CNN
CNN
CNN
Attention
True
Pred
Group 2 Physics Informed generative AI
Original github
https://github.com/lucidrains/denoising-diffusion-pytorch
Google Colab:
https://colab.research.google.com/drive/1RwOgM_WZyFC63SFMnJsNDqECbdTbAcBi?usp=sharing
Reference:
Review on PINN by Karniadakis et al. 2021 https://www.nature.com/articles/s42254-021-00314-5
- We use N-body simulation (by Tokiwa)
- Use diffusion model to generate the large-scale structure (left) from random image (right)
- Current problem: the training seems to take long time
Plan for tomorrow:
- train a normal diffusion model and check if the power spectrum is reproduced well (if ok, it's done!)
- train the model with physics sinformation (e.g., loss function = |Ptrue - Prec|)
- We tried to generate a snapshot of N-body simulation by diffusion model (data from Tokiwa)
→ Generated figure is somehow almost dark.
We also tried to implement physical information to diffusion model by adding the RMS error of power spectrum to the loss function (under construction)
k
P(k)
Group 3 (Tian, Jingjing, Joaquin, Keiya) Normalizing flow for different geometries
Group 3 (Tian, Jingjing, Joaquin, Keiya) Normalizing flow for different geometries
Group 3 (Tian, Jingjing, Joaquin, Keiya) Normalizing flow for different geometries
Group 3 (Tian, Jingjing, Joaquin, Keiya) Normalizing flow for different geometries
Ground Truth
Reconstruction
Group 3 (Tian, Jingjing, Joaquin, Keiya) Normalizing flow for different geometries
Ground Truth
Reconstruction
Group 3 (Tian, Jingjing, Joaquin, Keiya) Normalizing flow for different geometries
Gaussian base
Affine Gaussian
(scaled by x2)
Group 3 (Tian, Jingjing, Joaquin, Keiya) Normalizing flow for different geometries
Gaussian base
Gaussian mixture
Group 3 (Tian, Jingjing, Joaquin, Keiya) Normalizing flow for different geometries
Gaussian base
Gaussian mixture
(3 models)
Group 4: Investigate the feasibility of applying transformer on CMB polarization data
Task 1 (Hiroyuki Masaki, Ken Ohsuga): investigate literature (ADS or arxiv) on applying transformer on imagines, in particular with missing data
Task 2 (Yuta Asahina, Jia Liu): look for notebook with simple transformer architecture that can be used for any data
Task 3 (Hanchun Jiang): prepare CMB polarization data for training
Project plan: Hiroyuki and Ken will review current trend on transformer x image processing (and maybe in astronomy; Hanchun will prepare 1000 small patch CMB polarization maps for training; Finally, apply the network found by Yuta and Jia to 1 map with missing data, then compare the in-filled map (from ML) with the ground truth
Group 4: report for day 1
Data preparation: in progress to generate training data from Planck healpix maps
Vision Transformer vs CNN: transformer may perform better when there is a lot of data, but less environmental friendly (needs a lot of computing power)
Group 4: report for day 2
Data preparation: 90 training data with map size of 2 degrees and resolution of 0.1arcmin/pix from Planck healpix maps. The shape of each patch is 1200x1200.
We generate the missing data with 100x100 patch randomly. Then we try to reproduce the original data (ground truth) using Vision Transformers.
Original Data
Missing Data
Prediction
Cannot predict
Errors?
generate
training
Pathak et al. 2016
Input with gap
Human artist
Deep Learning